PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphometrics of the mandible of Metoposaurus krasiejowensis Sulej, 2002 and its ecological implications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amphibians, due to their ecological plasticity, are some of the best environmental indicators among vertebrates nowadays and in the fossil record. One such example is the extinct family Metoposauridae Watson, 1919. Metoposaurids were abundant amphibians in Late Triassic Pangea. The remains of the genus Metoposaurus Lydekker, 1890 have been found in Germany, Poland and Portugal with three species, respectively Metoposaurus diagnosticus (Meyer, 1842), Metoposaurus krasiejowensis Sulej, 2002 and Metoposaurus algarvensis Brusatte, Butler, Mateus and Steyer, 2015. Since the majority of studies concern the skull and the pectoral girdle, in this work M. krasiejowensis has been analysed through a morphometric study of the mandible. This was made possible by the high abundance of fossils found in Krasiejów (SW Poland) in the last 20 years. The characteristics considered are the morphology of the mandible corpus and its most relevant bones, the adaptation to stress during biting and the dermal ornamentation. The results reveal that not only do these characters have great intraspecific variability, but that at least two groups of a single population of M. krasiejowensis probably had different lifestyles, one more aquatic and the other more terrestrial.
Rocznik
Strony
art. no. e18
Opis fizyczny
Bibliogr. 125 poz., rys., tab., wykr.
Twórcy
  • University of Opole, European Centre of Palaeontology
  • University of Opole, Institute of Biology
Bibliografia
  • 1. Ahlberg, P.E. and Clack, J.A. 1998. Lower jaws, lower tetrapods – a review based on the Devonian genus Acanthostega. Transactions of the Royal Society of Edinburgh: Earth Sciences, 89 (1), 11–46.
  • 2. Anderson, P.S.L., Friedman, M. and Ruta, M. 2013. Late to the table: diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality. Integrative and Comparative Biology, 53 (2), 197–208.
  • 3. Antczak, M. and Bodzioch, A. 2018. Ornamentation of dermal bones of Metoposaurus krasiejowensis and its ecological implications. PeerJ, 6, e5267.
  • 4. Barycka, E. 2007. Morphology and ontogeny of the humerus of the Triassic temnospondyl amphibian Metoposaurus diagnosticus. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 243 (3), 351–361.
  • 5. Biewener, A.A. 1992. Overview of structural mechanics. In: Biewener, A.A. (Ed.), Biomechanics, Structures and Systems: A Practical Approach, 1–20. Oxford University Press; Oxford.
  • 6. Biknevicius, A.R. and Ruff, C.B. 1992. The structure of the mandibular corpus and its relationship to feeding behaviours in extant carnivorans. Journal of Zoology, 228 (3), 479–507.
  • 7. Bilan, W. 1975. The Rhaetic profile in Krasiejów near Opole. Geologia, 1 (3), 13–19.
  • 8. Bodzioch, A. and Kowal-Linka, M. 2012. Unraveling the origin of the Late Triassic multitaxic bone accumulation at Krasiejów (S Poland) by diagenetic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 346–347, 25–36.
  • 9. Boy, J.A. and Sues, H.D. 2000. Branchiosaurs: Larvae, Metamorphosis and Heterochrony in Temnospondyls and Seymouriamorphs. In: Heatwole, H. and Carroll, R.L. (Ed.), Amphibian Biology 4. Palaeontology, 1150–1197. Surrey Beatty; Chipping Norton.
  • 10. Brown, C.M., Evans, D.C., Campione, N.E., O’Brien, L.J. and Eberth, D.A. 2013. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial‐paralic system. Palaeogeography, Palaeoclimatology, Palaeoecology, 372, 108–122.
  • 11. Brusatte, S.L., Butler, R.J., Mateus, O. and Steyer, J.S. 2015. A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. Journal of Vertebrate Paleontology, 35 (3), e912988.
  • 12. Brusatte, S.L., Butler, R.J., Sulej, T. and Niedźwiedzki, G., 2009. The Taxonomy and Anatomy of Rauisuchian Archosaurs from the Late Triassic of Germany and Poland. Acta Palaeontologica Polonica, 54 (2), 221–230.
  • 13. Busbey, A.B. 1995. Structural consequences of skull flattening in crocodilians. In: Thomason, J.J. (Ed.), Functional Morphology in Vertebrate Paleontology, 173–192. Cambridge University Press; Cambridge.
  • 14. Bystrow, A.P. 1935. Morphologische Untersuchungen der Deckknochen des Schädel der WirbelTiere. I-Mitteilung: Schädel der Stegocephalen. Acta Zoologica, 16 (1–2), 65–141.
  • 15. Bystrow, A.P. 1947. Hydrophilous and xerophilous labyrinthodonts. Acta Zoologica, 28 (1), 137–164.
  • 16. Case, E.C., 1922. New reptiles and stegocephalians from the Upper Triassic of western Texas. In: Case, E.C. (Ed.), 120 pp. Carnegie Institution of Washington; Washington.
  • 17. Christiansen, P. and Adolfssen, J.S. 2005. Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora). Journal of Zoology, 266 (2), 133–151.
  • 18. Christiansen, P. and Wroe, S. 2007. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88 (2), 347–358.
  • 19. Clack, J.A., Ahlberg, P.E., Blom, H. and Finney, S.M. 2012. A new genus of Devonian tetrapod from North‐East Greenland, with new information on the lower jaw of Ichthyostega. Palaeontology, 55, 73–86.
  • 20. Clarac, F., Souter, T., Cornette, R., Cubo, J. and De Buffrénil, V. 2015. A quantitative assessment of bone area increase due to ornamentation in the Crocodylia. Journal of Morphology, 276 (10), 1183–1192.
  • 21. Coldiron, R.W. 1974. Possible functions of ornament in labyrinthodont amphibians. Occasional Papers of the Museum of Natural History of Lawrence, 33, 1–19.
  • 22. Cosgriff, J.W. and Zawiskie, J.M. 1979. A new species of the Rhytidosteidae from the Lystrosaurus zone and a review of the Rhytidosteoidea. Palaeontologica Africana, 22, 1–27.
  • 23. Credner, H. 1881. Die Stegocephalen aus dem Rothliegenden des Plauen’schen Grundes bei Dresden. Zeitschrift der Deutschen Geologischen Gesellschaft, 33 (4), 574–603.
  • 24. Cuff, A.R. and Rayfield, E.J. 2013. Feeding mechanics in spinosaurid theropods and extant crocodilians. PLoS ONE, 8 (5), e65295.
  • 25. Daeschler, E.B., Shubin, N.H. and Jenkins, F.A. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440 (7085), 757–763.
  • 26. De Buffrénil, V. 1982. Morphogenesis of bone ornamentation in extant and extinct crocodilians. Zoomorphology, 99 (2), 155–166.
  • 27. De Buffrénil, V., Clarac, F., Fau, M., Martin, S., Martin, B., Pellé, E. and Laurin, M. 2015. Differentiation and growth of bone ornamentation in vertebrates: A comparative histological study among the Crocodylomorpha: development of bone ornamentation in the Crocodylomorpha. Journal of Morphology, 276 (4), 425–445.
  • 28. De Buffrénil, V., Dauphin, Y., Rage, J.-C. and Sire, J.-Y. 2011. An enamel-like tissue, osteodermine, on the osteoderms of a fossil anguid (Glyptosaurinae) lizard. Comptes Rendus Palevol, 10 (5–6), 427–437.
  • 29. Dias, E.V. and Richter, M. 2002. On the squamation of Australerpeton cosgriffi Barberena, a temnospondyl amphibian from the Upper Permian of Brazil. Anais da Academia Brasileira de Ciências, 74 (3), 477–490.
  • 30. Dzik, J. 2001. A new Paleorhinus fauna in the early Late Triassic of Poland. Journal of Vertebrate Paleontology, 21, 625–627.
  • 31. Dzik, J. 2003. A breaked herbivorous Archosaur with dinosaur affinities from the early Late Triassic of Poland. Journal of Vertebrate Paleontology, 23, 556–574.
  • 32. Dzik, J. and Sulej, T. 2007. A review of the early Late Triassic Krasiejów biota from Silesia, Poland. Palaeontologia Polonica, 64, 3–27.
  • 33. Figueirido, B., Tseng, Z.J., Serrano-Alarcón, F.J., Martín-Serra, A. and Pastor, J.F. 2014. Three-dimensional computer simulations of feeding behaviour in red and giant pandas relate skull biomechanics with dietary niche partitioning. Biology Letters, 10 (4), 20140196.
  • 34. Fijałkowska-Mader, A. 2015. Record of climatic changes in the Triassic palynological spectra from Poland. Geological Quarterly, 59, 615–653.
  • 35. Fortuny, J., Marcé-Nogué, J., Gil, L. and Galobart, À. 2012. Skull mechanics and the evolutionary patterns of the oticnotch closure in capitosaurs (Amphibia: Temnospondyli). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295 (7), 1134–1146.
  • 36. Fraas, E. 1889. Die Labyrinthodonten der schwäbischen Trias. Palaeontographica, 36 (1–3), 1–158.
  • 37. Fritsch, A. 1889. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens, Vol. 2, 92 pp. Selbstverlag; Prag.
  • 38. Fry, B.G., Wroe, S., Teeuwisse, W., Van Osch, M.J.P., Moreno, K., Ingle, J., McHenry, C., Ferrara, T., Clausen, P., Scheib, H., Winter, K.L., Greisman, L., Roelants, K., Van Der Weerd, L., Clemente, C.J., Giannakis, E., Hodgson, W.C., Luz, S., Martelli, P., Krishnasamy, K., Kochva, E., Kwok, H.F., Scanlon, D., Karas, J., Citron, D.M., Goldstein, E.J.C., Mcnaughtan, J.E. and Norman, J.A. 2009. A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus. Proceedings of the National Academy of Sciences, 106 (22), 8969–8974.
  • 39. Giles, S., Rücklin, M. and Donoghue, P.C.J. 2013. Histology of “placoderm” dermal skeletons: Implications for the nature of the ancestral gnathostome. Journal of Morphology, 274 (6), 627–644.
  • 40. Goldfuss, A., 1847. Beiträge zur vorweltlichen Fauna des Steinkohlengebirges. 27 pp. Naturhistorischer Verein der Preussischen Rheinlande; Bonn.
  • 41. Grodzicka-Szymanko, W. 1971. Cyclic-sedimentary subdivision of the Rhaetian of the Polish Lowlands. Bulletin de l’Académie Polonaise des Sciences, série des Sciences de la Terre, 19, 137–147.
  • 42. Gross, W. 1941. Über den Unterkiefer einiger devonischer Crossopterygier. Abhandlungen der Preussischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 7, 1–51.
  • 43. Gruntmejer, K., Bodzioch, A. and Konietzko-Meier, D. 2021. Mandible histology in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland. PeerJ, 9, e12218.
  • 44. Gruntmejer, K., Konietzko-Meier, D., Bodzioch, A. and Fortuny, J. 2019a. Morphology and preliminary biomechanical interpretation of mandibular sutures in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland. Journal of Iberian Geology, 45 (2), 301–316.
  • 45. Gruntmejer, K., Konietzko‐Meier, D., Marcé‐Nogué, J., Bodzioch, A. and Fortuny, J. 2019b. Cranial suture biomechanics in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland. Journal of Morphology, 280 (12), 1850–1864.
  • 46. Gruszka, B. and Zieliński, T. 2008. Evidence for a very lowenergy fluvial system: a case study from the dinosaur-bearing Upper Triassic rocks of Southern Poland. Geological Quarterly, 52, 239–252.
  • 47. Hylander, W.L. 1979. Mandibular function in Galago crassicaudatus and Macaca fascicularis: An in vivo approach to Stress Analysis of the mandible. Journal of Morphology, 159 (2), 253–296.
  • 48. Janis, C.M., Devlin, K., Warren, D.E. and Witzmann, F. 2012. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis. Proceedings of the Royal Society B: Biological Sciences, 279 (1740), 3035–3040.
  • 49. Kalita, S., Teschner, E.M., Sander, P.M. and Konietzko‐Meier, D. 2022. To be or not to be heavier: The role of dermal bones in the buoyancy of the Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis. Journal of Anatomy, 241 (6), 1459–1476.
  • 50. Konietzko-Meier, D., Gruntmejer, K., Marcé-Nogué, J., Bodzioch, A. and Fortuny, J. 2018. Merging cranial histology and 3D-computational biomechanics: a review of the feeding ecology of a Late Triassic temnospondyl amphibian. PeerJ, 6, e4426.
  • 51. Konietzko-Meier, D. and Klein, N. 2013. Unique growth pattern of Metoposaurus diagnosticus krasiejowensis (Amphibia, Temnospondyli) from the Upper Triassic of Krasiejów, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 145–157.
  • 52. Konietzko-Meier, D. and Sander, P.M. 2013. Long bone histology of Metoposaurus diagnosticus (Temnospondyli) from the Late Triassic of Krasiejów (Poland) and its paleobiological implications. Journal of Vertebrate Paleontology, 33 (5), 1003–1018.
  • 53. Konietzko-Meier, D. and Wawro, K. 2007. Mandibular dentition in the Late Triassic temnospondyl amphibian Metoposaurus. Acta Palaeontologica Polonica, 52, 213–215.
  • 54. Lucas, S. 2015. Age and correlation of Late Triassic tetrapods from southern Poland. Annales Societatis Geologorum Poloniae, 85, 627–635.
  • 55. Lucas, S.G. 2020. Biochronology of Late Triassic Metoposauridae (Amphibia, Temnospondyli) and the Carnian pluvial episode. Annales Societatis Geologorum Poloniae, 90, 409–418.
  • 56. Lucas, S.G., Fillmore, D.L. and Simpson, E.L. 2010. Amphibian body impressions from the Mississippian of Pennsylvania, USA. Ichnos, 17, 172–176.
  • 57. Lucas, S.G., Spielmann, J.A. and Hunt, A.P. 2007. Biochronological significance of Late Triassic tetrapods from Krasiejów, Poland. New Mexico Museum of Natural History and Science Bulletin, 41, 248–258.
  • 58. Lucas, S.G., Rinehart, L.F., Heckert, A.B., Hunt, A.P. and Spielmann, J.A. 2016. Rotten Hill: A Late Triassic bonebed in the Texas Panhandle, USA. New Mexico Museum of Natural History and Science Bulletin, 72, 1–97.
  • 59. Lundberg, J.G. and Aguilera, O. 2003. The late Miocene Phractocephalus catfish (Siluriformes: Pimelodidae) from Urumaco, Venezuela: additional specimens and reinterpretation as a distinct species. Neotropical Ichthyology, 1 (2), 97–109.
  • 60. Lydekker, R. 1890. Catalogue of the fossil Reptilia and Amphibia in the British Museum of Natural History. Part IV, 295 pp. British Museum of Natural History; London.
  • 61. Mader, D. 1997. Palaeoenvironment evolution and bibliography of the Keuper (Upper Triassic) in Germany, Poland and other parts of Europe, 1058 pp. Sven von Loga; Köln.
  • 62. Märss, T. 2006. Exoskeletal ultrasculpture of early vertebrates. Journal of Vertebrate Paleontology, 26 (2), 235–252.
  • 63. McHenry, C.R., Clausen, P.D., Daniel, W.J.T., Meers, M.B. and Pendharkar, A. 2006. Biomechanics of the rostrum in crocodilians: A comparative analysis using finite‐element modeling. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A (8), 827–849.
  • 64. McHenry, C.R., Wroe, S., Clausen, P.D., Moreno, K. and Cunningham, E. 2007. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proceedings of the National Academy of Sciences, 104 (41), 16010–16015.
  • 65. Metzger, K.A., Daniel, W.J.T. and Ross, C.F. 2005. Comparison of beam theory and finite‐element analysis with in vivo bone strain data from the alligator cranium. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 283A (2), 331–348.
  • 66. Meyer, H. von. 1842. Labyrinthodonten-Genera. Neues Jahrbuch für Mineralogie, Geographie, Geologie, Paläontologie, 1842, 301–304.
  • 67. Meyer, H. von. 1858. Reptilien aus der Steinkohlenformation in Deutschland. Palaeontographica, 6, 59–219.
  • 68. Milner, A.R. and Schoch, R.R. 2004. The latest metoposaurid amphibians from Europe. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 232 (2–3), 231–252.
  • 69. Olson, E.C. 1961. Jaw Mechanisms: Rhipidistians, Amphibians, Reptiles. American Zoologist, 1 (2), 205–215.
  • 70. Organ, J.M., Ruff, C.B., Teaford, M.F. and Nisbett, R.A. 2006. Do mandibular cross-sectional properties and dental microwear give similar dietary signals? American Journal of Physical Anthropology, 130 (4), 501–507.
  • 71. Pochat‐Cottilloux, Y., Martin, J.E., Amiot, R., Cubo, J. and De Buffrénil, V. 2023. A survey of osteoderm histology and ornamentation among Crocodylomorpha: A new proxy to infer lifestyle? Journal of Morphology, 284 (1), 1–11.
  • 72. Racki, G. and Szulc, J. 2015. The bone-bearing Upper Triassic of Upper Silesia, southern Poland: integrated stratigraphy, facies and events – introductory remarks. Annales Societatis Geologorum Poloniae, 85, 553–555.
  • 73. Rayfield, E.J. 2007. Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms. Annual Review of Earth and Planetary Sciences, 35 (1), 541–576.
  • 74. Rinehart, L.F. and Lucas, S.G. 2013a. The functional morphology of dermal bone ornamentation in temnospondyl amphibians. In: Tanner, L.H., Spielmann, J.A. and Lucas, S.G. (Ed.), The Triassic System, Vol. 61, 524–532. New Mexico Museum of Natural History and Science Bulletin; Albuquerque.
  • 75. Rinehart, L.F. and Lucas, S.G. 2013b. Tooth form and function in temnospondyl amphibians: Relationship of shape to applied stress. In: Tanner, L.H., Spielmann, J.A. and Lucas, S.G. (Eds), The Triassic System. New Mexico Museum of Natural History and Science, Bulletin, 61, 533–542.
  • 76. Rinehart, L.F. and Lucas, S.G. 2016. Eocyclotosaurus appetolatus, a Middle Triassic Amphibian: Osteology, life history, and paleobiology. New Mexico Museum of Natural History and Science Bulletin, 70, 1–118.
  • 77. Rinehart, L.F. and Lucas, S.G. 2023. Lateral skull angle: a new sexual dimorphism signal in temnospondyl amphibians. New Mexico Museum of Natural History and Science Bulletin, 84, 559–584.
  • 78. Rinehart, L.F., Lucas, S.G., Hunt, A.P. and Heckert, A.B. 2023. Skull and jaw shape as indicators of trophic guild association in temnospondyl amphibians and other aquatic predators. New Mexico Museum of Natural History and Science Bulletin, 94, 585–610.
  • 79. Romer, A.S. 1947. Review of the Labyrinthodontia. Bulletin of the Museum of Comparative Zoolology, Harvard University, 99, 1–368.
  • 80. Rowe, A.J. and Snively, E. 2022. Biomechanics of juvenile tyrannosaurid mandibles and their implications for biteforce: Evolutionary biology. The Anatomical Record, 305 (2), 373–392.
  • 81. Ruta, M. and Bolt, J.R. 2008. The brachyopoid Hadrokkosaurus bradyi from the early Middle Triassic of Arizona, and a phylogenetic analysis of lower jaw characters in temnospondyl amphibians. Acta Palaeontologica Polonica, 53, 579–592.
  • 82. Scheyer, T., Martinsander, P., Joyce, W., Bohme, W. and Witzel, U. 2007. A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications. Organisms Diversity & Evolution, 7 (2), 136–144.
  • 83. Schoch, R.R. 2001. Can metamorphosis be recognised in Palaeozoic amphibians ? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 220 (3), 335–367.
  • 84. Schoch, R.R. 2009. Life-cycle evolution as response to diverse lake habitats in Paleozoic amphibians. Evolution, 63 (10), 2738–2749.
  • 85. Schoch, R.R. 2009b. Evolution of life cycles in early amphibians. Annual Review of Earth and Planetary Sciences, 37, 135–162.
  • 86. Schoch, R.R. 2010. Heterochrony: the interplay between development and ecology exemplified by a Paleozoic amphibian clade. Paleobiology, 36, 318–334.
  • 87. Schultze, H.P. and Arsenault, M. 1985. The panderichthyid fish Elpistostege: A close relative of tetrapods? Palaeontology, 28, 293–309.
  • 88. Seibert, E.A., Lillywhite, H.B. and Wassersug, R.J. 1974. Cranial co-ossification in frogs: relationship to rate of evaporite water loss. Physiological Zoology, 47, 261–265.
  • 89. Seidel, M.R. 1979. The osteoderms of the American alligator and their functional significance. Herpetologica, 35, 375–380.
  • 90. Settle, R.A., Briggler, J.T. and Mathis, A. 2018. A quantitative field study of paternal care in Ozark hellbenders, North America’s giant salamanders. Journal of Ethology, 36, 235–242.
  • 91. Shine, R. 1979. Sexual selection and sexual dimorphism in the amphibian. Copeia, 1979 (2), 297–306.
  • 92. Slater, G.J., Dumont, E.R. and Van Valkenburgh, B. 2009. Implications of predatory specialization for cranial form and function in canids. Journal of Zoology, 278 (3), 181–188.
  • 93. Slater, G.J., Figueirido, B., Louis, L., Yang, P. and Van Valkenburgh, B. 2010. Biomechanical Consequences of Rapid Evolution in the Polar Bear Lineage. PLoS ONE, 5 (11), e13870.
  • 94. Snively, E., Henderson, D.M. and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica, 51, 435–454.
  • 95. Środoń, J., Szulc, J., Anczkiewicz, A., Jewuła, K., Banaś, M. and Marynowski, L. 2014. Weathering, sedimentary and diagenetic controls of mineral and geochemical characteristics of the vertebrate-bearing Silesian Keuper. Clay Minerals, 49 (4), 569–594.
  • 96. Sulej, T. 2002. Species discrimination of the Late Triassic temnospondyl amphibian Metoposaurus diagnosticus. Acta Palaeontologica Polonica, 47, 535–546.
  • 97. Sulej, T. 2007. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Paleontologia Polonica, 64, 29–139.
  • 98. Sulej, T. and Majer, D. 2005. The temnospondyl amphibian Cyclotosaurus from the Upper Triassic of Poland. Palaeontology, 48 (1), 157–170.
  • 99. Szulc, J., Racki, G. and Jewuła, K. 2015a. Key aspects of the stratigraphy of the Upper Silesian middle Keuper, southern Poland. Annales Societatis Geologorum Poloniae, 85, 557–586.
  • 100. Szulc, J., Racki, G., Jewuła, K. and Środoń, J. 2015b. How many Upper Triassic bone-bearing levels are there in Upper Silesia (southern Poland)? A critical overview of stratigraphy and facies. Annales Societatis Geologorum Poloniae, 85, 587–626.
  • 101. Teschner, E.M., Sander, P.M. and Konietzko-Meier, D. 2018. Variability of growth pattern observed in Metoposaurus krasiejowensis humeri and its biological meaning. Journal of Iberian Geology, 44, 99–111.
  • 102. Therrien, F. 2005a. Feeding behaviour and bite force of sabretoothed predators. Zoological Journal of the Linnean Society, 145 (3), 393–426.
  • 103. Therrien, F. 2005b. Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology, 267 (3), 249–270.
  • 104. Therrien, F., Henderson, D.M. and Ruff, C.B. 2005. Bite me: Biomechanical models of theropod mandibles and implications for feeding behavior. In: Carpenter, K. (Ed.), The Carnivorous Dinosaurs, 179–237. Indiana University Press; Bloomington.
  • 105. Therrien, F., Quinney, A., Tanaka, K. and Zelenitsky, D.K. 2016. Accuracy of mandibular force profiles for bite force estimation and feeding behavior reconstruction in extant and extinct carnivorans. Journal of Experimental Biology, 219 (23), 3738–3749.
  • 106. Timoshenko, S.P. and Gere, J.M. 1972. Mechanics of Materials, 556 pp. Van Nostrand Reinhold Company; New York.
  • 107. Tseng, Z.J. 2013. Testing adaptive hypotheses of convergence with functional landscapes: a case study of bone-cracking hypercarnivores. PLoS ONE, 8 (5), e65305.
  • 108. Tseng, Z.J. and Binder, W.J. 2010. Mandibular biomechanics of Crocuta crocuta, Canis lupus, and the late Miocene Dinocrocuta gigantea (Carnivora, Mammalia): Dinocrocuta mandibular biomechanics. Zoological Journal of the Linnean Society, 158 (3), 683–696.
  • 109. Tseng, Z.J. and Wang, X. 2010. Cranial functional morphology of fossil dogs and adaptation for durophagy in Borophagus and Epicyon (Carnivora, Mammalia). Journal of Morphology, 271 (11), 1386–1398.
  • 110. Tseng, Z.J., Antón, M. and Salesa, M.J. 2011. The evolution of the bone-cracking model in carnivorans: cranial functional morphology of the Plio-Pleistocene cursorial hyaenid Chasmaporthetes lunensis (Mammalia: Carnivora). Paleobiology, 37 (1), 140–156.
  • 111. Vági, B., Marsh, D., Katona, G., Végvári, Z., Freckleton, R.P., Liker, A. and Székely, T. 2022. The evolution of parental care in salamanders. Scientific Reports, 12 (1), 16655.
  • 112. Vorobyeva, E.I. and Schultze, H.P. 1991. Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods. In: Schultze, H-P. and Trueb, L. (Ed.), Origins of Higher Groups of Tetrapods, 68–109. Comstock Publishing Associates; Ithaca.
  • 113. Walmsley, C.W., Smits, P.D., Quayle, M.R., McCurry, M.R., Richards, H.S., Oldfield, C.C., Wroe, S., Clausen, P.D. and McHenry, C.R. 2013. Why the long face? The mechanics of mandibular symphysis proportions in crocodiles. PLoS ONE, 8 (1), e53873.
  • 114. Watson, D.M.S. 1919. The structure, evolution and origin of the Amphibia. The ‘Orders’ Rachitomi and Stereospondyli. Philosophical Transaction of the Royal Society of London, Series B, 209, 1–73.
  • 115. Weryński, Ł. and Kędzierski, M. 2022. Microstructural characteristics and seasonal growth patterns observed in Metoposaurus krasiejowensis teeth. Geological Quarterly, 66, 26.
  • 116. Westoll, T.S. 1938. Ancestry of the Tetrapods. Nature, 141, 127–128.
  • 117. Whiteaves, J.F. 1881. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, in the Province of Quebec. Annals and Magazine of Natural History, 8 (44), 159–162.
  • 118. Witzmann, F. and Gassner, T. 2008. Metoposaurid and mastodonsaurid stereospondyls from the Triassic–Jurassic boundary of Portugal. Alcheringa: An Australasian Journal of Palaeontology, 32 (1), 37–51.
  • 119. Witzmann, F. and Soler-Gijón, R. 2010. The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian Bystrowiella. Acta Zoologica, 91 (1), 96–114.
  • 120. Witzmann, F., Scholz, H., Müller, J. and Kardjilov, N. 2010. Sculpture and vascularization of dermal bones, and the implications for the physiology of basal tetrapods. Zoological Journal of the Linnean Society, 160 (2), 302–340.
  • 121. Wroe, S., Clausen, P., McHenry, C., Moreno, K. and Cunningham, E. 2007. Computer simulation of feeding behaviour in the thylacine and dingo as a novel test for convergence and niche overlap. Proceedings of the Royal Society B: Biological Sciences, 274 (1627), 2819–2828.
  • 122. Yates, A.M. and Warren, A.A. 2000. The phylogeny of the “higher” temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli. Zoological Journal of the Linnean Society, 128, 77–121.
  • 123. Young, G.C. 2009. An Ordovician vertebrate from western New South Wales, with comments on Cambro-Ordovician vertebrate distribution patterns. Alcheringa: An Australasian Journal of Palaeontology, 33 (1), 79–89.
  • 124. Zittel, K.A. von. 1911. Grundzüge der Paläontologie (Paläozoologie). II. Abteilung. Vertebrata, 576 pp. Verlag von R. Oldenbourg; München and Berlin.
  • 125. Zylberberg, L., Meunier, F.J. and Laurin, M. 2010. A Microanatomical and Histological Study of the Postcranial Dermal Skeleton in the Devonian Sarcopterygian Eusthenopteron foordi. Acta Palaeontologica Polonica, 55, 459–470.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-076f914c-bd70-4989-8cbf-dc15c66c00bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.