Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research is concerned with the fusion of artificial intelligence (AI) and machine learning within multi-hierarchical caching systems, specifically targeting vehicular and edge caching domains. This study introduces an innovative architecture harmonizing Thompson sampling learning-based caching policies with advanced vehicle clustering and content-popularity prediction methods (TS-MMCM). Simulations show substantial performance improvements and a big impact of the proposed approach on system efficiency in dynamic network environments. The proposal demonstrates a notable gain in cache hit rates and decreased latency levels, highlighting the potential of AI to improve caching techniques in dynamic network environments.
Rocznik
Tom
Strony
65--78
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- LINATI Laboratory, Kasdi Merbah University, Ouargla, Algeria
autor
- LEREESI Laboratory, HNS-RE2SD, Batna, Algeria
autor
- LINATI Laboratory, Kasdi Merbah University, Ouargla, Algeria
Bibliografia
- [1] B. Radouane, G. Lyamine, K. Ahmed, and B. Kamel, “Scalable Mobile Computing: From Cloud Computing to Mobile Edge Computing”, 2022 5 th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5G/6 G-based Interconnected Digital Worlds (NISS), Bandung, Indonesia, 2022 (https://doi.org/10.1109/NISS55057.2022.10085600).
- [2] W. Jiang et al., “Multi-agent Reinforcement Learning for Efficient Content Caching in Mobile D 2D Networks”, IEEE Transactions on Wireless Communications, vol. 18, no. 3, pp. 1610– 1622, 2019 (https://doi.org/10.1109/TWC.2019.2894403).
- [3] Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning Automata Based Q-learning for Content Placement in Cooperative Caching”, IEEE Transactions on Communications, vol. 68, no. 6, pp. 3667– 3680, 2020 (https://doi.org/10.1109/TCOMM.2020.2982136).
- [4] X. Fang, T. Zhang, Y. Liu, and Z. Zeng, “Multi-agent Cooperative Alternating Q-learning Caching in D2D-enabled Cellular Networks”, IEEE Global Communication Conference (GLOBECOM), Waikoloa, USA, 2019 (https://doi.org/ 10.1109/GLOBECOM38437.2019 .9014053).
- [5] Y. Qian et al., “Reinforcement Learning-based Optimal Computing and Caching in Mobile Edge Network”, IEEE Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2343 –2355, 2020 (https://doi.org/10.1109/JSAC.2020.3000396).
- [6] P. Liu, Y. Zhang, T. Fu, and J. Hu, “Intelligent Mobile Edge Caching for Popular Contents in Vehicular Cloud Toward 6G”, IEEE Transactions on Vehicular Technology, vol. 70 , no. 6, pp. 5265–5274 , 2021 (https://doi.org/10.1109/TVT.2021.3076304).
- [7] W. Qi et al., “Extensive Edge Intelligence for Future Vehicular Networks in 6G”, IEEE Wireless Communications, vol. 28, no. 4, pp. 128–135, 2021 (https://doi.org/10.1109/MWC.001.2000393).
- [8] J. Shi et al., “A Novel Deep Q-learning-based Air-assisted Vehicular Caching Scheme for Safe Autonomous Driving”, IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7 , pp. 4348–4358, 2021 (https://doi.org/10.1109/TITS.2020.3018720).
- [9] Z. Zhang, C.-H. Lung, M. St-Hilaire, and I. Lambadaris, “Smart Proactive Caching: Empower the Video Delivery for Autonomous Vehicles in ICN-based Networks”, IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7955– 7965, 2020 (https://doi.org/10.1109/TVT.2020.2994181).
- [10] Y. Liu and B. Mao, “On a Novel Content Edge Caching Approach Based on Multi-Agent Federated Reinforcement Learning in Internet of Vehicles”, 2023 32 nd Wireless and Optical Communications Conference (WOCC), Newark, USA, 2023 (https://doi.org/ 10.1109/WOCC58016.2023.10139417).
- [11] A. Ndikumana et al., “Deep Learning Based Caching for Self-driving Cars in Multi-access Edge Computing”, IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2862– 2877, 2021 (https://doi.org/10.1109/TITS.2020.2976572).
- [12] Z. Zhu et al., “Proactive Caching in Auto Driving Scene via Deep Reinforcement Learning”, 2019 11 th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 2019 (https://doi.org/10.1109/WCSP.2019.8928131).
- [13] A. Ndikumana and C.S. Hong, “Self-driving Car Meets Multi-access Edge Computing for Deep Learning-based Caching”, 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 2019 (https://doi.org/ 10.1109/ICOIN.2019.8718113).
- [14] W. Jiang, G. Feng, S. Qin, and Y.-C. Liang, “Learning-based Cooperative Content Caching Policy for Mobile Edge Computing”, ICC 2019– 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019 (https://doi.org/ 10.1109/ICC.2019 .8761121).
- [15] C. Zhang et al., “Toward Edge-assisted Video Content Intelligent Caching with Long Short-term Memory Learning”, IEEE Access, vol. 7, pp. 152832– 152846, 2019 (https://doi.org/ 10.1109/ACCESS.2019.2947067).
- [16] Y. Ye, M. Xiao, and M. Skoglund, “Mobility-aware Content Preference Learning in Decentralized Caching Networks”, IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp. 62–73, 2020 (https://doi.org/10.1109/TCCN.2019.2937519).
- [17] Y. Zhang et al., “Cooperative Edge Caching: A Multi-agent Deep Learning Based Approach”, IEEE Access, vol. 8, pp. 133212 –133224, 2020 (https://doi.org/10.1109/ACCESS.2020.3010329).
- [18] X. Xu, M. Tao, and C. Shen, “Collaborative Multi-agent Multiarmed Bandit Learning for Small-cell Caching”, IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2570–2585 , 2020 (https://doi.org/10.1109/TWC.2020.2966599).
- [19] R. Wang et al., “Cooperative Caching Strategy with Content Request Prediction in Internet of Vehicles”, IEEE Internet of Things Journal, vol. 8, no. 11, pp. 8964– 8975, 2021 (https://doi.org/ 10.1109/JIOT.2021.3056084).
- [20] X. Bi and L. Zhao, “Collaborative Caching Strategy for RL-based Content Downloading Algorithm in Clustered Vehicular Networks”, IEEE Internet of Things Journal, vol. 10, no. 11, pp. 9585– 9596, 2023 (https://doi.org/10.1109/JIOT.2023.3235661).
- [21] T. Kanungo et al., “An Efficient K-means Clustering Algorithm: Analysis and Implementation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881 –892, 2002 (https: //doi.org/10.1109/TPAMI.2002.1017616).
- [22] D. Zhang et al., “New Multi-hop Clustering Algorithm for Vehicular Ad Hoc Networks”, IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 4, pp. 1517– 1530 , 2019 (https://doi.org/10.1109/TITS.2018.2853165).
- [23] C. Zhang et al., “Deep Transfer Learning for Intelligent Cellular Traffic Prediction Based on Cross-domain Big Data”, IEEE Journalon Selected Areas in Communications, vol. 37, no. 6, pp. 1389–1401 , 2019 (https://doi.org/10.1109/JSAC.2019.2904363).
- [24] C. Olah, Understanding LSTM Networks, Github, 2015 [Online] Available: http://colah.github.io/posts/2015- 08-Unders tanding-LSTMs/.
- [25] C. Wang, Z. Zhao, Q. Sun, and H. Zhang, “Deep Learning-based Intelligent Dual Connectivity for Mobility Management in Dense Network”, 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA, 2018 (https://doi.org/ 10.1109/VTC-Fall.2018.8690554).
- [26] G. Barlacchi et al., “Multi-source Dataset of Urban Life in the City of Milan and the Province of Trentino”, Scientific Data, no. 2, art. no. 150055, 2015 (https://doi.org/10.1038/sdata.2015.55).
- [27] Y. Cui, Y. Liang, and R. Wang, “Resource Allocation Algorithm with Multi-platform Intelligent Offloading in D2D-enabled Vehicular Networks”, IEEE Access, vol. 7, pp. 21246 –21253 , 2019 (https://doi.org/10.1109/ACCESS.2018.2882000).
- [28] S. Agrawal and N. Goyal, “Thompson Sampling for Contextual Bandits with Linear Payoffs”, ArXiv, 2012 (https://doi.org/ 10.48550 /arXiv.1209.3352).
- [29] Y. Chen, J. Liu, Y. Shi, and M. Sheng, “Prefetch and Cache Replacement Based on Thompson Sampling for Satellite IoT Network”, ICC 2021 – IEEE International Conference on Communications, Montreal, Canada, 2021 (https://doi.org/ 10.1109/ICC42927.2021 .9500508).
- [30] L. Zhao et al., “Intelligent Content Caching Strategy in Autonomous Driving Toward 6G”, IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 9786 – 9796, 2022 (https://doi.org/10.1109/TITS.2021.3114199).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-076ee6df-9d69-4974-a006-b676d94df055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.