Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work presents the results of research on the effect of deformation parameters on hot ductility of high-Mn austenitic steel with niobium and titanium. The investigations were carried out on steel with 0.05% C, 24% Mn, 3.5% Si, 1.5% Al, 0.030% Nb and 0.075% Ti. Hot static tensile test was performed using Gleeble 3800 thermomechanical simulator. Samples were deformed in a temperature range from 1050°C to 1200°C with a strain rate of 3·10-3 s-1. The reduction in area (RA), determined in the static tensile test, was the basis for determining the hot ductility of the examined steel. Reduction in area of examined steel decreases from 88% at the temperature of 1050°C to 59% at 1200°C. High hot ductility of the investigated steel is the result of the synergy of chemical composition optimization, properly conducted modification of non-metallic inclusions and formed fine-grained microstructure of dynamically recrystallized austenite. In addition to hot ductility, parameters characterizing susceptibility of studied steel to high temperature cracking were also defined, namely: ductility recovery temperature (DRT), nil ductility temperature (NDT) and nil strength temperature (NST) were determined. The values of these temperatures are 1240°C, 1250°C and 1270°C, respectively. This means that the temperature of the beginning of plastic deformation of ingots of this steel may be equal even slightly above 1200°C. In addition, the high-temperature brittleness range (HTBR) was determined, which is equal 30°C.
Wydawca
Rocznik
Tom
Strony
200--213
Opis fizyczny
Bibliogr. 60 poz., fig.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland
Bibliografia
- 1. Bordone M., Monsalve A., Perez Ipina J. Fracture toughness of high-manganese steels with TWIP/TRIP effects. Engineering Fracture Mechanics 2022; 275(108837): 1–15. doi: 10.1016 /j.engfracmech.2022.108837.
- 2. Ma H., Chen Ch., Li J., Wang X., Qi X., Zhang F., Tang T. Effect of pre-deformation degree on tensile properties of high carbon high manganese steel at different strain rates. Materials Science and Engineering A 2022; 829(142146): 1–12. doi: 10.1016/j. msea.2021.142146.
- 3. Wang Y., Yu H., Ma Z., Mu R., Song R., Taylor T. Room temperature compression deformation behavior of a Cr-Nb alloyed high manganese steel. Vacuum 2023; 207(111696): 1–8. doi: 10.1016/j. vacuum.2022.111.696.
- 4. Lee S., Lee S-Y., Han J., Hwang B. Deformation behavior and tensile properties of an austenitic Fe24Mn-4Cr-0.5C high-manganese steel: Effect of grain size. Materials Science and Engineering A 2019; 742: 334–343. doi: 10.1016/j.msea.2018.10.107.
- 5. Song D., Beier H.T., Vormwald M. The effect of loading direction and pre-deformation on the lowcycle fatigue behavior of high-manganese twinning- induced plasticity steels. International Journal of Fatigue 2022; 174(107737): 1–14. doi: 10.1016/j. ijfatigue.2023.107737.
- 6. Choi W.S., Sandlöbes S., Malyar N.V., Kirchlechner C., Korte-Korzel S., Dehm G., Choi P., Raabe D. On the nature of twin boundary-associated strengthening in Fe-Mn-C steel. Scripta Materialia 2018; 156: 27–31. doi: 10.1016/j.scriptamat.2108.07.009.
- 7. Madivala M., Schwedt A., Prahl U., Bleck W. Strain hardening, damage and fracture behavior of Al-added high Mn TWIP steels. Metals 2019; 9(367): 1–24. doi: 10.3390/met9030367.
- 8. Pierce D.T., Jiménez J.A., Bentley J., Raabe D., Witting J.E. The influence of stacking fault Energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation. Scripta Materialia 2015; 100: 178–190. doi: 10.1016/j.actamat.2015.08.030.
- 9. Opiela M., Fojt-Dymara G., Grajcar A., Borek W. Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel. Materials 2020; 13(7): 1–13. doi: 10.3390/ma14123254.
- 10. Fu H., Zhang W., Zhang T., Huang X., Chen P., Wu H., Li Z., Shan Q. MC precipitates affected by nirogen addition in Ti-V-Nb micro-alloyed high manganese steel. Materials Today 2023; 37(107089): 1–15. doi: 10.1016/mtcomm.2023.107089.
- 11. Grajcar A., Kozłowska A., Topolska S., Morawiec M. Effect of deformation temperature on microstructure evolution and mechanical properties of low-carbon high-Mn steek. Advances in Materials Science and Engineering 2018; 7369827: 1–7. doi: 10.1155/2018/7369827.
- 12. Li X., Chen L., Zhao Y., Misra R.D.K. Influence of manganese content e-/a-martensitic transformation tensile properties of low-C high-Mn TRIP steels. Materials and Design 2018; 142: 190–202. doi: 10.1016/j.matdes.2018.01.026.
- 13. An D., Zaefferer S. Formation mechanism of dislocation patterns under low cycle fatigue of a high-manganese austenitic TRIP steels with dominating planar slip mode. International Journal of Plasticity 2019; 121: 244–260. doi: 10.1016/j.ijplas.2019.06.009.
- 14. Kaar S., Schneider R., Križan D., Béal C., Sommitsch C. Influence of quenching and partitioning process on the transformation kinetics and hardness in a lean medium manganese TRIP steel. Metals 2019; 9(353): 1–13. doi: 10.3390/met9030353.
- 15. De Cooman B.C., Estrin Y., Kim S.K. Twinning-induced plasticity (TWIP) steels. Acta Materialia 2018; 142: 283–362. doi: 10.1016/j. actamat.2017.06.046.
- 16. Radwański K., Kuziak R., Rozmus R. Structure andmechanical properties of dual-phase steel following heat treatment simulations reproducing a continuous annealing line. Archives of Civil and Mechani- cal Engineering 2019; 19: 453–468. doi: 10.1016/j. acme.2018.12.006.
- 17. Sevsek S., Haase C., Bleck W. Strain-rate-depen- dent deformation behavior and mechanical properties of a multi-phase medium-manganese steel. Met- als 2019; 9(344): 1–20. doi: 10.3390/met9030344.
- 18. Grajcar A., Opiela M., Fojt-Dymara G. The influence of hot-working conditions on a structure of high-manganese steel. Archives of Civil and Mechanical Engineering 2009; 19(3): 49–58. doi: 10.1016/S1644-9665(12)60217-9.
- 19. Kim J.K., De Cooman B.C. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel. Materials Science and Engineering A 2016; 676: 216–231. doi: 10.1016/j.msea.2016.08.106.
- 20. Wesselmecking S., Haupt M., Ma Y., Song W., Hirt G., Bleck W. Mechanism-controlled thermome- chanical treatment of high manganese steels. Materials Science and Engineering A 2021; 828: 1–9. doi: 10.1016/j.msea.2021.142056.
- 21. Grässel O., Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Materials Science Technology 1998; 14(12): 1213–1217. doi: 10.1179/mst.1998.14.12.1213.
- 22. Jabłońska M., Niewielski G., Kawalla R. High manganese steel TWIP – technological plasticity and selected properties. Solid State Phenomena 2014; 212: 87–90. doi: 10.4028/www.scientific. net/SSP.212.87.
- 23. Shen Y.F., Jia N., Misra R.D.K., Zu L. Softening behavior by excessive twinning and adiabate heating at high strain rate in a Fe-20Mn-0.6C TWIP steel. Acta Materialia 2016; 103: 229–242. doi: 10.1016/j. actamat.2015.09.061.
- 24. Chen Y., Liu G.M., Li H.Y., Zhang X.M., Ding H. Microstructure, strain hardening behavior, segregation and corrosion resistance of an electron beam welded thick high-Mn TWIP steel plate. Journal of Materials Research and Technology 2023; 25: 1105–1114. doi: 10.1016/j.jmrt. 2023.06.010.
- 25. Lan P., Tang H.Y., Zhang J.Y. Hot ductility of high alloy Fe-Mn-C austenite TWIP steel. Materials Science and Engineering A 2016; 660: 127–138. doi: 10.1016/j.msea.2016.02.086.
- 26. Wang S.H., Liu Z.Y., Zhang W.N., Wang G.D., Liu J.L., Liang G.F. Microstructure and mechanical property of strip in Fe-23Mn-3Si-3Al TWIP steel by twin roll casting. ISIJ International 2009; 49: 1340–1346. doi: 10.2355/isijinternational.49.1340
- 27. Opiela M., Fojt-Dymara G. Effect of non-metallic inclusions on the hot ductility of high-Mn steels. Advances in Science and Technology. Research Journal 2023; 17(3): 19-30. doi: 10.12913/ 22998624/162702.
- 28. Chu J., Zhang L., Yang J., Bao Y., Ali N., Zhang C. Characterization of precipitation, evolution, and growth of MnS inclusions in medium/high manganese steel during solidification process. Materials Characterization 2022; 194(112367): 1–14. doi: 10.1016/j.matchar.2022.112367.
- 29. Kang S.E., Banerjee J.R., Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Materials Science and Technology 2012; 28: 589– 596. doi: 10.1179/1743284711Y.0000000109.
- 30. Chu J., Nian Y., Zhang L., Bao Y., Ali N., Zhang C., Zhou H. Formation, evolution and remove behavior of manganese-containing inclusions in medium/high manganese steels. Journal of Materials Research and Technology 2023; 22: 1505–1521. doi: 10.1016/j.jmrt. 2022.12.023.
- 31. Han K., Yoo Y., Lee B., Han I., Lee C. Hot ductility and hot cracking susceptibility of Ti-modified austenitic high Mn weld HAZ. Materials Chemistry and Physics 2016; 184: 118–129. doi: 10.1016/j. matchemphys.2016.09.032.
- 32. Kang S.E., Banerjee J.R., Tuling A. Influence of P and N on hot ductility of high Al, boron containing TWIP steels. Materials Science and Technology 2014; 30: 1328–1335. doi: 10.1179/1743284714Y.0000000.
- 33. Sozańska-Jędrusik L., Mazurkiewicz J., Borek W., Matus K., Chmiela B., Zubko M. Effect of Nb and Ti micro-additives and thermo-mechanical treatment of high-manganese steels with aluminum and silicon on their microstructure and mechanical properties. Archives of Metallurgy and Materials 2019; 64(1): 133–142. doi: 10.24425/amm.2019.126229.
- 34. Dobrzański L.A., Borek W., Mazurkiewicz J. Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions. Archives of Metallurgy and Materials 2016; 61(2): 725–730. doi: 10.1515/amm-2016-0124.
- 35. Yuan X., Chen L., Zhao Y., Di H., Zhu F. Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel. Journal of Materials Processing Technology 2015; 217: 278–285. doi: 10.1016/j. jmatprotec.2014.11.027.
- 36. Kawulok P., Schindler I., Smetana B., Moravec J., Mertová A., Drozdová M., Kawulok R., Opéla P., Rusz S. The relationship between nil-strength temperature, zero strength temperature and solid temperature of carbon steels. Metals 2019; 10(399): 1–14. doi: 10.3390/met10030399.
- 37. Kuzsella L., Lukás J., Szűcs K. Nil-strength temperature and hot tensile tests on S960QL high-strength low-alloy steel. Production Processes and Systems 2013; 6(1): 67–78. doi: 10.13140/ 2.1.4655.9369.
- 38. ASTM E112-10. Standard Test Methods for Determining Average Grain Size. 2004.
- 39. Liu H., Liu J., Wu B., Shen Y., He Y., Su X. Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels. Materials Science and Engineering A 2017; 708: 360–374. doi: 10.1016/j.msea.2017.10.001.
- 40. Mejia I., Salas-Reyes A.E., Calvo J., Cabrera J.M.Effect Ti and B microadditions on the hot ductility behavior of a high-Mn austenitic Fe-23Mn-1.5Al- 1.3Si-0.5C TWIP steel. Materials Science and Engineering A 2015; 648: 311–329. doi: 10.1016/j. msea.2015.09.079.
- 41. Mejia I., Salas-Reyes A.E., Bedolla-Jacuinde A., Calvo J., Cabrera J.M. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel. Materials Science and Engineering A 2014; 616: 229–239. doi: 10.1016/j.msea.2014.08.030.
- 42. Mintz B., Qaban A. The influence of precipitation, high levels of Al, Si, P and small B addition on the hot ductility of TWIP and TRIP assisted steels: A critical review. Metals 2019; 12(502): 1–31. doi: 10.3390/ met12030502.
- 43. Borrmann L., Senk D., Steenken B., Rezende J.L.L. Influence of cooling and strain rates on the hot ductility of high manganese steels within the system Fe- Mn-Al-C. Steel Research 2021; 92(2): 1–10. doi: 10.1002/srin.202000346.
- 44. Hutrtado-Delgado E., Morales R.D. Hot ductility and fracture mechanisms of a C-Mn-Nb-Al steel. Metalurgical and Materials Transactions B 2001; 32(5): 919–927. doi: 10.1007/s11663-001-0078-7.
- 45. Kaushik P., Lowry P., Yin H., Pielet H. Particles characterization for clean steelmaking and quality control. Ironmaking & Steelmaking B 2012; 39(4): 284–300. doi: 10.1179/1743281211Y. 0000000069.
- 46. Liu H., Liu J., Michelic S.K., Wei W.F., Zhuang C., Li S.Q. Characteristic of AlN inclusions in low carbon Fe-Mn-Si-Al steel produced by AOD-ESR method. Ironmaking & Steelmaking B 2016; 43: 171–179. doi: 10.1179/1743281215Y.0000000028.
- 47. Kang S.E., Kang M.H., Mintz B. Influence of vanadium, boron and titanium on hot ductility of high Al TWIP steel. Materials Science and Technology 2020; 37(1): 42 –58. doi: 10.1080/02670836. 2020.1861736.
- 48. Crowther D.N., Mintz B. Influence of grain size and precipitation of microalloyed steel. Materials Science and Technology 1986; 2(11): 1099–1105. doi: 10.1179/mst.1986.2.11.1099.
- 49. Fojt-Dymara G., Opiela M., Borek W. Susceptibility of high-manganese steel to high-temperature cracking. Materials 2022; 15(8198): 1 –12. doi: 10.3390/ma15228198.
- 50. Qaban A., Mintz B., Kang S.E., Naher S. Hot ductility of high Al TWIP steels containing Nb and Nb-V. Materials Science and Technology 2017; 33: 1645– 1656. doi: 10.1080/02670836. 2017.1309097.
- 51. Osinkolu G.A., Tacikowski M., Kobylanski A. Combined effect of AlN and sulphur on hot ductility of high purity iron-base alloys. Materials Science and Technology 1985; 1: 520–525. doi: 10.1179/mst.1985.1.7.520.
- 52. Abushosha R., Ayyad S., Mintz B. Influence of cooling rate and MnS inclusions on the hot ductility of steels. Materials Science and Technology 1998; 14: 227–235. doi: 10.1179/mst.1998.14.3.227.
- 53. Kang S.E., Kang M.H., Mintz B. Influence of vanadium, boron and titanium on hot ductility of high Al, TWIP steels. Materials Science and Technology 2020; 37: 42–58. doi: 10.1080/02670836.2020.1861736.
- 54. Turkdogan E.T. Causes and effects of nitride and carbonitride precipitation during continuous casting. Iron & Steelmaker 1989; 16(5): 61–75.
- 55. Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloyed steels up to three microalloying elements with or within additions of aluminium. Materials Science and Technology 1992; 8: 406-420. doi: 10.1179/026708392790170991.
- 56. Opiela M. Thermodynamic analysis of precipitation process of MX-type phases in high strength low alloy steels. Advances in Science and Technology. Research Journal 2021; 15(2): 90–100. doi: 10.12913/22998624/135514.
- 57. Mintz B., Abushosha R. Effectivnes of hot tensile test in simulating straightening in continuous casting. Materials Science and Technology 1992; 8: 171–178. doi: 10.1179/mst.1992.8.2.171.
- 58. Grajcar A., Borek W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steel. Archives of Civil and Mechanical Engineering 2008; 8(3): 29–38. doi: 10.1016/S1644-9665(12)60119-8.
- 59. Kuc D., Cebulski J. Plastic behavior and microstructure characterization high manganese aluminum alloyed steel for the automotive industry. Journal of Achivements in Materials and Manufacturing Engineering 2012; 51(1): 14–21.
- 60. Kawulok P., Schindler I., Navratil H., Sevcak H., Sojka J., Koncna K., Chmiel B. Hot formability of het-resistance stainless steel X15CrNiSi20-12. Archives of Metallurgy and Materials 2019; 65(2): 727–734. doi: 10.24425/amm.2020.132812
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0765b31b-6b62-4eb7-bcc1-9042b57e2ad2