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Abstract

Deep Neural Networks (DNNs) have shown great success in many fields. Various network
architectures have been developed for different applications. Regardless of the complexi-
ties of the networks, DNNs do not provide model uncertainty. Bayesian Neural Networks
(BNNs), on the other hand, is able to make probabilistic inference. Among various types
of BNNs, Dropout as a Bayesian Approximation converts a Neural Network (NN) to a
BNN by adding a dropout layer after each weight layer in the NN. This technique pro-
vides a simple transformation from a NN to a BNN. However, for DNNs, adding a dropout
layer to each weight layer would lead to a strong regularization due to the deep architec-
ture. Previous researches [1, 2, 3] have shown that adding a dropout layer after each
weight layer in a DNN is unnecessary. However, how to place dropout layers in a ResNet
for regression tasks are less explored. In this work, we perform an empirical study on
how different dropout placements would affect the performance of a Bayesian DNN. We
use a regression model modified from ResNet as the DNN and place the dropout layers
at different places in the regression ResNet. Our experimental results show that it is not
necessary to add a dropout layer after every weight layer in the Regression ResNet to let
it be able to make Bayesian Inference. Placing Dropout layers between the stacked blocks
i.e. Dense+Identity+Identity blocks has the best performance in Predictive Interval Cov-
erage Probability (PICP). Placing a dropout layer after each stacked block has the best
performance in Root Mean Square Error (RMSE).
Keywords: Regression, Bayesian Neural Network, MC Dropout

1 Introduction

Deep learning has shown great success in the
field of computer vision. Various networks have
shown high capabilities in image recognition [4,
5, 6, 7]. Based on these networks, more work
have been applied for tasks such as object detection
[8, 9, 10], semantic segmentation [11, 12, 13], pose
estimation [14, 15, 16], gaze estimation [17, 18, 19]
and so on. In general, these networks use con-
volutional neural networks (CNN) to extract fea-

tures and apply different functions for different
types of tasks. For classification tasks such as im-
age classification, SoftMax + Fully Connected (FC)
layers are usually used to get class probabilities.
For regression tasks such as pose estimation, FC
layers are normally applied to obtain output vec-
tor(s). ResNet [7] uses shortcut connections to over-
come the vanishing gradient problem when the lay-
ers going deeper. In addition to its use classifica-
tion tasks, ResNet is used a lot in regression tasks
[20, 21, 22, 23]. An empirical study [24] is per-
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formed to analyze the VGG-16 [5] and ResNet-50
networks for regression task. The inputs of these
works are images hence CNNs are used to extract
features.

The regression task in computer vision takes
images as the input to the network. In other ap-
plications besides computer vision, the input data
are often in the form of vectors. Common machine
learning based regression techniques include Deci-
sion Tree Regression (DTR) [25], Support Vector
Regression (SVR)[26] and Neural Network (NN).
DNNs are also used for regression tasks when the
input data is a vector. In these cases, the DNNs
used in computer vision need to be modified. One
common solution is replacing the convolutional lay-
ers with FC layers [27, 28, 29]. In [28], a modified
ResNet, we refer it as Regression ResNet (RRN),
is used for the regression. The convolutional layers
and pooling layers in ResNet are replaced with FC
layers. The authors of [28] show that RRN has bet-
ter performance than the DTR, SVR and NN. IRNet
and SRNet [27] are similar to [28], the main dif-
ference is the strategy of residual connections and
the number of hidden units. The authors compare
IRNet with 10 other machine learning algorithms
(including Random Forest, DTR, SVR and so on).
Their results show that the IRNet outperforms the
10 machine learning algorithms. In [29], Multi-
Layer Perceptron (MLP) is adopted in the Encoder-
Decoder architecture. Residual shortcut connec-
tions are added between Encoders and Decoders.
Adding shortcut connections can increase the per-
formance of regression. The proposed model also
has better performance than MLP.

Despite the huge success of DNN, it does not
provide weight uncertainty of the model thus it is
not able to make probabilistic inference. Bayesian
Neural Network (BNN) can capture model uncer-
tainty [30]. A modern technique used in BNNs is
Variational Inference (VI), which learns approxi-
mate posterior distributions [31]. VI based BNN
models include Bayes by Backprop [32], Dropout
as a Bayesian Approximation [33] and Bayesian
Hypernetwork [34, 35].

Dropout as a Bayesian Approximation adds
Dropout [36] layers to the weight layers. The au-
thors of [33] have shown that it is equivalent to ap-
proximating Bayesian inference in deep Gaussian
processes. It has the advantage of simple imple-

mentation compared to other BNNs. Several works
have adopted this technique into existing DNNs. In
[1], Dropout as a Bayesian Approximation is ap-
plied on PoseNet [15] to make Bayesian inference
on camera pose, it uses GoogLeNet [6] as the back-
bone. In [2], SegNet [12] also uses Dropout as
a Bayesian Approximation for semantic segmen-
tation. Segnet uses a Encoder-Decoder frame and
VGG-16 as the encoder and the decoder is in the re-
verse order. In [3], the Bayesian QuickNAT is used
for whole-brain segmentation on Magnetic Reso-
nance Imaging (MRI) images. The QuickNAT is
based on Fully Convolutional Network (FCN) [11].
Although the Dropout as A Bayesian Approxima-
tion is easy to implement, adding a Dropout layer
after each convolutional layer will make the regu-
larization too strong [2] in DNNs. It will lead to
a long training process. In all the works [1, 2, 3]
mentioned above, a reduced number of dropout lay-
ers are added at different places in the networks
to avoid the strong regularization. All the results
show that not adding a dropout layer after each con-
volutional layer is a better option. Notwithstand-
ing there are numerous DNN architectures proposed
in various fields of researches, there is no analyt-
ical solution showing the optimal locations to put
dropout layers in a certain type of network archi-
tecture. Moreover, placing dropout in DNNs for re-
gression and in ResNet is less explored.

In this work, we conduct an empirical study
to analyze the BRRN by Applying Dropout as a
Bayesian Approximation to the RRN. We place
dropout layers at the different locations in the net-
work architecture and see the impacts of these dif-
ferent placements for regression tasks. We observed
that placing a Dropout layer after every FC layer
in the RRN is not necessary which is consistent
with the findings in [2, 12, 3]. Placing dropout
layers between the stacked blocks in the RRN has
the best performance in Predictive Interval Cover-
age Probability (PICP). Placing a dropout layer af-
ter each stacked block has the best performance in
Root Mean Square Error (RMSE). When designing
a BRRN using dropout as a Bayesian Approxima-
tion, we demonstrate the schemes of dropout place-
ments that can avoid strong regularization and ob-
tain higher accuracy. Our work provides a reference
for deploying BRRN in regression applications.
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The remainder of the paper is organized as fol-
lows, in Section 2, we show the details of the RRN
and the methodology of converting a NN to a BNN.
In Section 3, we describe the settings for the exper-
iments. We perform two experiments. First, we test
different dropout locations in the residual connec-
tions in a residual block. Then we test the dropout
locations between the residual blocks of the RRN.
The experimental results are demonstrated in Sec-
tion 4. The conclusion is given in Section 5.

2 Methodology

2.1 Regression ResNet

We use the modified ResNet i.e. the RRN in
[28] as the DNN. Figure 1 shows the network ar-
chitecture. The network consists of stacked Dense
blocks and Identity blocks. The convolutional lay-
ers and pooling layers in ResNet is replaced by FC
layers in the RRN. In one stacked block, one Dense
block and two Identity blocks are connected se-
quentially. The network consists of three stacked
blocks. A FC layer is used to readout the output. In
Dense blocks, the residual connection is fed to a FC
layer and Batch Normalization (BN)[37]. In Iden-
tity blocks, the residual connection is directly added
to the feedforward output. In both types of blocks,
the FC layer is followed by BN and non-linear acti-
vation i.e. Rectified Linear Uni (ReLU)[38] except
the residual connection in the Dense block.

2.2 MC Dropout

For a Neural Network (NN) with weights W,
bias b, adding Dropout layers after each weight
layer equivalent to approximate Bayesian inference
in deep Gaussian processes [33]. This technique
can be referred as MC Dropout [34]. We shortly
describe the MC Dropout from [33].

When a dropout operation is applied, some
weights are removed and they follow the Bernoulli
distribution. For the ith layer in a NN, the output is

ŷi+1 = σ(xi(ziWi)+bi)(zi+1Wi+1), (1)

where σ is the non-linear activation i.e. ReLU
operation and z is the probability distribution for
dropout operation. The cost function L of a NN is

L =
1
N

N

∑
i=1

E(yi, ŷi)+λ
L

∑
i=1

(||Wi||22 + ||bi||22), (2)

where E(·, ·) is the loss function, y and ŷ are the
ground truth and the prediction of the model re-
spectively, N is the length of the training data. The
second term is a L2 regularization term with decay
factor λ. For approximating the Gaussian process
model, the variational inference is used and Monte
Carlo integration is used for minimizing KL diver-
gence. The cost function is proportional to

LGP−MC ∝
1

2N

N

∑
i=1

E(yi, ŷi)+

λ
L

∑
i=1

(
(1− pi)l2

2τN
||Wi||22 +

l2

2τN
||bi||22), (3)

where pi is the dropout rate in ith layer, τ is model
precision and l is prior length scale. The predictive
mean and predictive variance can be obtained by it-
erating the NN forward process T times,

E(y∗)≈ 1
T

T

∑
i=1

ŷ∗(x∗,Wi
1, ...,W

i
L), (4)

Var((y∗T )(y))≈
1
T

T

∑
i=1

ŷ∗(x∗,Wi
1, ...,W

i
L)

T ŷ∗(x∗,Wi
1, ...,W

i
L), (5)

where E is the predictive mean and Var is predictive
variance, x∗ and ŷ∗ is the new entry data for infer-
ence and the new prediction. The weight decay λ is
calculated by

λ =
pl2

2Nτ
, (6)

2.3 Bayesian Regression ResNet

Combining the RRN and MC Dropout, the al-
gorithm for the inference of BRRN is shown be-
low, where f is the BRRN network and P is the
predictions of the BRRN. Give the dropout rate p,
the model precision tau and the length scale l, the
weight decay λ can be calculated from Equation 6.
To make Bayesian inference for a trained BRRN,
simply put a new data entry to the model for T
times. The mean prediction and the variance of the
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Figure 1. Architecture of the Regression ResNet and the Dense block and the Identity block.

predication can be calculated from T predictions.

3 Experiment Settings

We perform two experiments, Dropout Place-
ments in Residual Blocks and Dropout Placements
in Bayesian Regression ResNet. In Dropout Place-
ments in Bayesian Regression ResNet, we evalu-
ate the performance of placing a dropout layer af-
ter each weight layer. However, the residual con-
nection will lead to a few dropout placement vari-
ants within the Dense block and the Identity block.
We test and select the best dropout placement vari-
ant in this experiment. In Dropout Placements in
Bayesian Regression ResNet, Wee use the result
from the previous experiment as the baseline i.e.

placing a dropout layer after each weight layer. We
evaluate different dropout locations in the stacked
blocks and compare the performances with the per-
formance of placing a dropout layer after each
weight layer.

3.1 Dataset

We use 10 datasets for our experiments. The
details of the datasets are indicated in Table 1. The
datasets are from various fields. The SafeVS dataset
is from [39], the rest datasets are the same as in [33].
The SafeVS dataset collects the hand positions and
robot TCP positions and predicts repulsive TCP po-
sitions for hand collision avoidance. All the data
is not pre-processed except for the normalization.
We apply Z Normalization to all datasets. The Z-
Normalization is defined as,

X′ =
X−µx

σx
, (7)

where µx and σx are the mean and standard devia-
tion of the training data X.

3.2 Evaluation Metrics

The evaluation metrics are RMSE and PICP
[40]. The PICP is calculated as follows,

P(ŷLi ≤ yi ≤ ŷUi)> 0.95, (8)

(a) Network architecture of
Regression ResNet.

(b) Dense block and Identity block.

Figure 1: Architecture of the Regression ResNet and the Dense block and the Identity block.

Algorithm 1: Bayesian Regression ResNet
Inference
Input: λ, p, T
Output: E,Var
Data: Test dataset x∗
Enable dropout;
P = 0;
f(λ, p);
for i ← 0 to T do

y∗ = f(x∗);
P = P

∪
y∗;

end
E(P); Var(P);

3 Experiment Settings
We perform two experiments, Dropout Placements in
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gression ResNet. In Dropout Placements in Bayesian Re-
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where ŷLi and ŷUi is the lower bound and the upper bound
of the prediction interval. We select the confidence as
95%. A boolean vector b summarizes if yi is captured
by the prediction interval,

bi =

{
1 if ŷLi ≤ yi ≤ ŷUi

0 else ,
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The PICP is calculated as,

PICP =
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n

n
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i=1

bi. (10)

We also use the mean rank to compare the performances
of the models in datasets. The mean rank R is calculated
as,

R =
1
K

K

∑
i=1

ranki, (11)
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3 Experiment Settings

We perform two experiments, Dropout Placements in
Residual Blocks and Dropout Placements in Bayesian Re-
gression ResNet. In Dropout Placements in Bayesian Re-
gression ResNet, we evaluate the performance of placing a
Dropout layer after each weight layer. However, the resid-
ual connection will lead to a few Dropout placement vari-
ants within the Dense block and the Identity block. We
test and select the best Dropout placement variant in this
experiment. In Dropout Placements in Bayesian Regres-
sion ResNet, Wee use the result from the previous experi-
ment as the baseline i.e. placing a Dropout layer after each
weight layer. We evaluate different Dropout locations in
the stacked blocks and compare the performances with the
performance of placing a Dropout layer after each weight
layer.

3.1 Dataset

We use 10 datasets for our experiments. The details of
the datasets are indicated in Table 1. The datasets are
from various fields. The SafeVS dataset is from [39], the
rest datasets are the same as in [33]. The SafeVS dataset
collects the hand positions and robot TCP positions and
predicts repulsive TCP positions for hand collision avoid-
ance. All the data is not pre-processed except for the nor-
malization. We apply Z Normalization to all datasets. The
Z-Normalization is defined as,

X′ =
X−µx

σx
, (7)

where µx and σx are the mean and standard deviation of
the training data X.

3.2 Evaluation Metrics

The evaluation metrics are RMSE and PICP [40]. The
PICP is calculated as follows,

4
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Table 1. Datasets details.

No. of Sample Input Dimension Output Dimension
SafeVS 500000 6 3
Kin8nm 8192 8 1
Boston 506 13 1

Concrete 1030 8 1
Energy 768 8 1
Naval 11934 16 1
Power 9568 4 1
Protein 45730 9 1
Wine 1599 11 1
Yacht 308 6 1

where ŷLi and ŷUi is the lower bound and the upper
bound of the prediction interval. We select the con-
fidence as 95%. A boolean vector b summarizes if
yi is captured by the prediction interval,

bi =

{
1 if ŷLi ≤ yi ≤ ŷUi

0 else ,
(9)

The PICP is calculated as,

PICP =
1
n

n

∑
i=1

bi. (10)

We also use the mean rank to compare the perfor-
mances of the models in datasets. The mean rank R
is calculated as,

R =
1
K

K

∑
i=1

ranki, (11)

where K is the number of datasets. We calculate
rank RRMSE in RMSE and the rank RPICP in PICP
as well as RMEAN which is the mean of RRMSE and
RPICP.

4 Results

We demonstrate the experimental results of
dropout Placements in Residual Blocks and dropout
Placements in Bayesian Regression ResNet in this
Section.

4.1 Dropout Placements in Residual
Blocks

4.1.1 Baseline

In this experiment, we evaluate the dropout
placements in the Dense block and the Identity
block. The architecture of the baseline model is
shown in Figure 2. The number (N) of the stacked
block Dense+Identity+Identity is one. The dropout
layer is added after the residual connection and non-
linear activation. The experiment is performed on
Boston Housing, Concrete Compressive Strength,
Energy Efficiency, Naval Propulsion Plants, Com-
bined Cycle Power Plant, Wine Quality and Yacht
Hydrodynamics. The loss function is Mean Square
Error (MSE) loss and the optimizer is Adam. Af-
ter every training epoch, a validation is performed.
The final model is the one with the least validation
loss. The hyper-parameters for training the baseline
model are shown in Table 2.

4.1.2 Dropout Placement Variants

We evaluate three dropout placement variants
in the Dense block and two variants in the Identity
block. Figure 3 shows the detailed configuration of
the variants. Since the model consists of the stacked
block combination Dense+Identity+Identity. We
name the variant as Di-I j where i is the index in the
Dense block configuration and j is the index in the
Identity block configuration. For instance, D1-I1
represents that the Dense block in the network uses
the Dropout-Dense-1 (Figure 3) configuration and
the Identity blocks use the Dropout-Iden-1 (Figure
3) configuration. The baseline variant is D3-I0.

Table 3 shows the results of Dropout placement
variants in the Dense block and the Identity block.
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Figure 2. The baseline of the dropout placements. A dropout layer is placed after each weight layer.

Table 2. Hyper parameters of the baseline model for the experiment Dropout Placements in Residual
Blocks.

Boston Concrete Energy Naval Power Wine Yacht
Epoch 130 200 200 150 200 200 200

Hidden Unit 32 16 16 32 16 16 16
Batch Size 32 8 64 128 128 32 16

Learning Rate 0.001 1e-4 0.001 1e-4 0.001 1e-4 1e-4
Tau 5e-4 0.03 0.15 0.5 0.05 2 0.01

Dropout Rate 0.1 0.005 0.05 0.005 0.005 0.1 0.005
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The baseline model i.e. D3-I0 performs best on the
Boston Housing and Naval Propulsion datasets, the
ranks are within two. D0-I0 performs best on En-
ergy Efficiency and Yacht Hydrodynamics datasets.
The performance on Naval Propulsion is slightly
lower. For D1-I1, the performances on Concrete
Compressive Strength and Power Plant are the best.
D3-I1 also performs well on Boston Housing. Re-
garding to the ranks of the model variants, we use
RRMSE, RPICP and RMEAN for the evaluation. Con-
sidering the RMSE rank, D2-I1 has the best RMSE
mean rank score. D1-I0 has the best PICP mean
rank. Considering both RMSE and PICP, D1-I0 and
D0-I0 are the only two variants with the rand score
below 4 and D1-I0 is around 0.3 better than D0-I0.
Overall, D1-I0 has the best PICP mean rank score
and the second best RMSE mean rank score.

4.2 Dropout Placements in Bayesian Re-
gression ResNet

4.2.1 Baseline

We evaluate the dropout placement in the BRR.
The baseline model for this experiment is similar to
the one in Figure 2. The N is set to three, which
is the same as the RR. A dropout layer is placed
after each weight layer. In the case of residual
connection, we adapt the D1-I0 variant configura-
tion in each of the Dense+Identity+Identity stacked
blocks. We refer the baseline model as DO-Dense.
We applied the same baseline model to Kin8nm
dataset, Protein dataset and SafeVS dataset. The
loss function and the optimizer is the same as in the
previous experiment. The hyper-parameters for the
baseline model in the datasets are shown in Table 4.

Table 4. Hyper parameters of the baseline model
for the experiment Dropout Placements in

Bayesian Regression ResNet.

Kin8nm SafeVS Protein
Epoch 200 200 250

Hidden Unit 16 32 16
Batch Size 16 5000 512

Learning Rate 0.005 0.001 0.001
Tau 2 1e-5 0.5

Dropout Rate 5e-4 0.1 0.005

4.2.2 Dropout Placement Variants

We evaluate five Dropout placement variants,
DO-Inter, DO-InterD, DO-Before, DO-After and
DO-SE in the Regression ResNet. The details of the
variants are indicated in Figure 4. In DO-Inter, all
three stacked Dense+Identity+Identity blocks are
separated by Dropout layers. In DO-InterD, one
Dropout layer is added after each Dense block and
Identity block. In DO-Before and DO-After config-
urations, the one Dropout layer is added before and
after each stacked block. The DO-SE only places
Dropout layers at the start and the end of the stacked
blocks.

Table 5 shows the RMSEs and PICPs of the
dropout placement variants on SafeVS dataset. DO-
After obtains the best RMSE among all variant con-
figurations. DO-Before, DO-After and DO-SE gen-
erally perform well than DO-Dense, DO-Inter and
DO-InterD in RMSE. The differences are clearly
observable. For PICP (1), all other variants per-
form better than the baseline model. For PICP (2)
and PICP (3), DO-Before has comparable results
with the baseline model, the rest variant configura-
tions have obvious better results than the baseline.
Considering the RMSE and PICPs together, all the
tested dropout placement variants outperform the
baseline i.e. DO-Dense. DO-InterD has extremely
well performance on PICP (2) and PICP (3) but
it only performs better than the baseline on PICP
(1). DO-Inter and DO-SE have similar results on
PICP (2) and PICP (3), however DO-SE has higher
PICP (1) than DO-Inter. In addition, The RMSE of
DO-SE is lower than DO-Inter. The difference is
around 6. In total, DO-SE has the best performance
in PICP among all dropout Placement Variants and
DO-After has the least RMSE.

Table 6 shows the RMSEs and PICPs of the
dropout placement variants on Kin8nm and Protein
dataset. The RMSEs of all variants on Kin8nm
dataset are comparable. DO-After has the least
RMSE. Except for DO-SE, the RMSEs of all other
variants are around 0.25. The PICP of DO-Inter is
the highest among all variants on Kin8nm. For the
Protein dataset, DO-After also has the least RMSE
and highest PICP. For the baseline model, the per-
formance in PICP is only better than DO-SE for
Kin8nm and DO-Before for Protein. Although the
RMSE for Kin8nm is the second best, the score is
not obviously better than other Dropout variants.
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Figure 3. Different Dropout placement variants in the Dense block and the Identity block.
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Figure 3. Different Dropout placement variants in the Dense block and the Identity block.
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Table 3. Dropout placement variants in the Dense block and the Identity block.

Baseline(D3-I0) D0-I0 D1-I0 D2-I0 D0-I1 D1-I1 D2-I1 D3-I1

Boston RMSE 2.4978 2.6249 2.6039 2.5165 3.065 3.318 2.8683 2.2879
PICP 0.902 0.8325 0.8039 0.7647 0.7255 0.7451 0.8431 0.8627

Concrete RMSE 18.0635 18.2892 17.6064 18.1651 18.0433 17.789 18.0225 18.1268
PICP 0.5 0.5577 0.5288 0.5192 0.5192 0.5577 0.5288 0.5481

Energy RMSE 1.7527 1.631 1.6541 3.1067 3.5543 2.0553 1.5758 3.6017
PICP 0.9539 0.9231 0.9359 0.8333 0.8718 0.8205 0.8974 0.8846

Naval RMSE 0.001 0.0011 0.0029 0.0027 0.003 0.003 0.001 0.0028
PICP 0.8728 0.8861 0.788 0.7714 0.7714 0.8362 0.8362 0.8188

Power RMSE 5.0471 5.0156 5.0402 5.0686 5.0524 4.9525 5.0687 4.9886
PICP 0.6415 0.6269 0.6674 0.6508 0.6321 0.6601 0.6259 0.6259

Wine RMSE 0.8543 0.8659 0.8481 0.8656 0.8441 0.8656 0.8437 0.8482
PICP 0.8148 0.8395 0.8395 0.8519 0.8642 0.8333 0.8272 0.8519

Yacht RMSE 5.8718 5.4153 5.8387 5.6126 5.9612 5.8003 5.638 5.4224
PICP 0.6875 0.7812 0.8125 0.6875 0.7188 0.75 0.5625 0.7188

Rank
RRMSE 4.1429 4.2857 3.8571 5.1429 5.8571 4.8571 3.4286 4
RPICP 4.8257 3.1429 3 5.5714 5.1429 4.2857 5.2857 4.2857

RMEAN 4.2143 3.7143 3.4286 5.3571 5.5 4.5714 4.3571 4.1429

Figure 4. Different dropout placements in the Regression ResNet.

Table 5. Result of Dropout position variants on SafeVS dataset.

RMSE PICP (1) PICP (2) PICP (3) Mean PICP
Baseline (DO-Dense) 25.0269 0.6418 0.8357 0.8577 0.7784

DO-Inter 24.8448 0.7742 0.9456 0.963 0.8943
DO-InterD 28.2758 0.6544 0.9969 0.9969 0.8827
DO-Before 19.5191 0.8209 0.8736 0.8466 0.847
DO-After 15.1608 0.8158 0.9049 0.9498 0.8902
DO-SE 18.6065 0.8646 0.937 0.95 0.9172
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Table 6. Result of dropout position variants on Kin8nm and Protein dataset.

Kin8nm Protein
RMSE PICP RMSE PICP

Baseline (DO-Dense) 0.2563 0.4872 5.5586 0.5712
DO-Inter 0.2583 0.6413 5.7376 0.6062

DO-InterD 0.2583 0.6304 5.7965 0.5926
DO-Before 0.2572 0.5 5.4146 0.5634
DO-After 0.2556 0.5761 5.2859 0.5809
DO-SE 0.2783 0.4239 5.5219 0.575

Overall, the baseline does not outperform the
other Dropout variants, placing a Dropout layer af-
ter every weight layer in the RRN is unnecessary. It
is consistent with the findings in [2, 12, 3]. Con-
sidering RMSE as the criterion for model selec-
tion, DO-After has the best performance. Consider-
ing PICP as the criterion for model selection, DO-
Inter has the best performance on Kin8nm dataset
and Protein dataset and second best mean PICP
in SafeVS dataset. Although DO-SE has the best
mean PICP in SafeVS dataset, its performances in
Kin8nm and Protein can not compete with DO-
Inter.

5 Conclusion

In this paper, we perform an empirical study
on evaluating the impact of different dropout place-
ments in a modified ResNet for regression tasks.
The MC Dropout technique places a dropout layer
after each weight layer in a DNN, which is equiva-
lent to an approximation to deep Gaussian process.
Using MC Dropout can easily convert a DNN to
a Bayesian DNN, however, the regularization will
be too strong due to the deep network architec-
ture. This will lead to a very long training pro-
cess. Adding fewer dropout layers to a DNN has
been shown to be effective to convert the DNN to
Bayesian DNN. ResNet was developed for com-
puter vision tasks, it can also be modified to be ap-
plied in univariate and multivariate regression tasks.
We study the impact of different dropout place-
ments in the Regression ResNet. We find out that
placing dropout layers after each FC layer does not
outperform the other dropout placement variants.
Placing dropout layers after and between the resid-
ual blocks have the best RMSE and PICP among all
tested variants.
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