PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elimination of thermal drift in measuring the positioning accuracy of a three axis milling machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to draw attention to more reliable verification method of positioning accuracy. The improvement lies in mathematical elimination of thermal impact during the measurement process. This thermal impact, always present during the motion of movable parts, is of a special systemic character. It increases the indefiniteness of measurement of the classic measurement method. This measurement uncertainty can be reduced by implementing the procedure introduced in this paper. The reduction can be achieved by separating the temperature impact from other sources of inaccuracy. Such separation is a very new solution. The methodology relies on mathematical processing and does not depend on the manner of accuracy measurement. The evaluation method also yields diagnostic information on the machine’s condition. The experiments were performed with the use of laser interferometer.
Słowa kluczowe
Twórcy
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovak Republic
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovak Republic
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovak Republic
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovak Republic
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovak Republic
Bibliografia
  • 1.Chen, X. B., Geddam, A., & Yuan, Z. J. Accuracy improvement of three-axis CNC machining centers by quasi-static error compensation. Journal of Manufacturing Systems, 16(5), 1997, 323-336.
  • 2.Kráľ, J. jr. Kráľ, J. Verification of a three axis milling machine accuracy in the process of complex shaped part production. In: Applied Mechanics and Materials (Vol. 474, 2014, 261-266). Trans Tech Publications.
  • 3.Lin, M. T., & Wu, S. K. Modeling and improvement of dynamic contour errors for five-axis machine tools under synchronous measuring paths. International Journal of Machine Tools and Manufacture, 72, 2013, 58-72.
  • 4.Mayr, J., Ess, M., Weikert, S., & Wegener, K. Comparing different cooling concepts for ball screw systems. In: Proceedings ASPE Annual Meeting. 2010, 978-981.
  • 5.Castro, H. F. F., & Burdekin, M. Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer. International Journal of Machine Tools and Manufacture, 43(9), 2003, 947-954.
  • 6.Acero, R., et al. Verification of an articulated arm coordinate measuring machine using a laser tracker as reference equipment and an indexed metrology platform, Measurement, 69, 2015, 52-63.
  • 7.Debski, H., Teter, A., Kubiak, T., & Samborski, S. Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Composite Structures, 136, 2016, 593-601.
  • 8.Jachowicz T.: Construction of clamping units of injection molding machines. Polimery, 50 (2), 2005, 110-117.
  • 9.Molnár, V., Fedorko, G., Stehlíková, B., Tomašková, M., & Hulínová, Z. Analysis of asymmetrical effect of tension forces in conveyor belt on the idler roll contact forces in the idler housing. Measurement, 52, 2014, 22-32.
  • 10.Molnár, V., Fedorko, G., Stehlíková, B., Kudelás, Ľ., & Husáková, N. Statistical approach for evaluation of pipe conveyor’s belt contact forces on guide idlers. Measurement, 46(9), 2013, 3127-3135.
  • 11.Molnár, V., Fedorko, G., Stehlíková, B., Michalik, P., & Weiszer, M. A regression model for prediction of pipe conveyor belt contact forces on idler rolls. Measurement, 46(10), 2013, 3910-3917.
  • 12.Parkinson, S., & Longstaff, A. P. Multi-objective optimisation of machine tool error mapping using automated planning. Expert Systems with Applications, 42(6), 2015, 3005-3015.
  • 13.Aguado, Sergio, et al. Improving a real milling machine accuracy through an indirect measurement of its geometric errors. Journal of Manufacturing Systems, 40, 2016, 26-36.
  • 14.Schwenke, H., Franke, M., Hannaford, J., & Kunzmann, H. Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Annals-Manufacturing Technology, 54(1), 2005, 475-478.
  • 15.Lu, X., & Rao, N. Six-axis position measurement system for levitated motion stages. CIRP Annals-Manufacturing Technology, 62(1), 2013, 507-510.
  • 16.Lei, W. T., & Hsu, Y. Y. Accuracy test of five-axis CNC machine tool with 3D probe–ball. Part I: design and modeling. International Journal of Machine Tools and Manufacture, 42(10), 2002, 1153-1162.
  • 17.Lei, W. T., & Hsu, Y. Y. Accuracy test of five-axis CNC machine tool with 3D probe–ball. Part II: errors estimation. International Journal of Machine Tools and Manufacture, 42(10), 2002, 1163-1170.
  • 18.Hsu, Y. Y., & Wang, S. S. . A new compensation method for geometry errors of five-axis machine tools. International Journal of Machine Tools and Manufacture, 47(2), 2007, 352-360.
  • 19.Fu, G., Fu, J., Xu, Y., Chen, Z., & Lai, J. Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. International Journal of Machine Tools and Manufacture, 89, 2015, 170-181.
  • 20.He, Z., Fu, J., Zhang, L., & Yao, X. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool. International Journal of Machine Tools and Manufacture, 88, 2015, 1-8.
  • 21.Chen, D., Dong, L., Bian, Y., & Fan, J. Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool. International Journal of Machine Tools and Manufacture, 94, 2015, 74-87.
  • 22.Chen, J. X., Lin, S. W., & He, B. W. Geometric error measurement and identification for rotary table of multi-axis machine tool using double ballbar. International Journal of Machine Tools and Manufacture, 77, 2014, 47-55.
  • 23.Ding, S., Huang, X., Yu, C., & Liu, X. Identification of different geometric error models and definitions for the rotary axis of five-axis machine tools. International Journal of Machine Tools and Manufacture, 100, 2016, 1-6.
  • 24.Lee, J. H., Liu, Y., & Yang, S. H. Accuracy improvement of miniaturized machine tool: geometric error modeling and compensation. International Journal of Machine Tools and Manufacture, 46(12), 2006, 1508-1516.
  • 25.Palencar, R., Duris, S., & Ranostaj, J. Conclusions and some comments on the calculation of uncertainty when constructing a temperature scale. Measurement Techniques, 54(8), 2011, 910-920.
  • 26.Liu, Y., Gao, D., & Lu, Y. Volumetric calibration in multi-space in large-volume machine based on measurement uncertainty analysis. The International Journal of Advanced Manufacturing Technology, 76(9-12), 2015, 1493-1503.
  • 27.Wang, Z., & Maropoulos, P. G. Real-time laser tracker compensation of a 3-axis positioning system – dynamic accuracy characterization. The International Journal of Advanced Manufacturing Technology, 84(5-8), 2016, 1413-1420.
  • 28.ISO 230-2 Machine tools - Test code for machine tools - Part 2: Determination of accuracy and repeatability of positioning of numerically controlled axes.
  • 29.Kay, S. M. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.
  • 30.Andolfatto, L., Mayer, J. R. R., & Lavernhe, S. Adaptive Monte Carlo applied to uncertainty estimation in five axis machine tool link errors identification with thermal disturbance. International Journal of Machine Tools and Manufacture, 51(7), 2011, 618-627.
  • 31.Honus, S., & Juchelková, D. Comparison of Numeric Methods that Simulate Energy Transfer by Radiation. In: Applied Mechanics and Materials (Vol. 260, 2013, pp. 605-610). Trans Tech Publications.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-076228d2-75d1-442a-82f4-c6e61e650838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.