PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical solution of the heat advection equation in a two-dimensional domain using the discontinuous Galerkin method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical solution of the heat advection equation in a two dimensional domain using the Discontinuous Galerkin Method (DGM). The advection equation is widely used in heat transfer problems, particularly in the field of fluid dynamics. The discontinuous Galerkin method is a numerical technique that allows for the solution of partial differential equations using a piecewise polynomial approximation. In this study, DGM is applied to the heat advection equation and its effectiveness in solving the problem is investigated. The findings of this study suggest that the Discontinuous Galerkin Method is a promising approach for solving heat transfer problems in a two-dimensional domain.
Rocznik
Strony
57--68
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Dimov, I., Farago, I., & Vulkov, L. (2015). Finite Difference Methods, Theory and Applications. Springer-Verlag GmbH.
  • [2] Whiteley, J. (2017). Finite Element Methods: A Practical Guide. Springer Int. Pub. AG.
  • [3] Maliska, C. (2023). The Finite Volume Method. DOI: 10.1007/978-3-031-18235-8.3.
  • [4] Reed, W.H., & Hill, T.R. (1973). Triangular Mesh Methods for the Neutron Transport Equation. Technical report LA-UR-73-479, Los Alamos National Laboratory. Los Alamos.
  • [5] Lesaint, P., & Raviart, A. (1974). On a Finite Element Method for Solving the Neutron Transport Equation, in: Mathematical Aspects of Finite Elements in Partial Differential Equations. C.A. deBoor. New York: Academic Press, 89-123.
  • [6] Dolejší, V., & Feistauer, M. (2015). Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow. Cham: Springer.
  • [7] Pozorski, Z., & Pozorska, J. (2022). Influence of the heterogeneity of the core material on the local instability of a sandwich panel. Materials 2022, 15(19), 6687. DOI: 10.3390/ma15196687
  • [8] Pozorska, J. (2018). Numerical modelling of sandwich panels with a non-continuous soft core. MATEC Web Conf., 157, 06007. DOI: 10.1051/matecconf/201815706007
  • [9] LeVeque, R.J. (2012). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
  • [10] Flaherty, J.E., Krivodonova, L., Remacle, J.-F., & Shephard, M.S. (2002), Aspects of discontinuous Galerkin methods for hyperbolic conservation laws. Element Analysis and Design, 38(10), 889-908.
  • [11] Chandrasekar, A. (2022), Numerical Methods for Atmospheric and Oceanic Sciences. Cambridge University Press.
  • [12] Koornwinder, T.H. (1984). Orthogonal polynomials with weight function (1-x)α(1+x)β+Mδ(x+1)+ Nδ(x-1). Canadian Mathematical Bulletin, 27(2), 205-214.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-075d450e-3992-4a11-8fa6-98439a78684f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.