Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
End-of-life photovoltaic panels: collection, reprocessing, recovery?
Języki publikacji
Abstrakty
W ostatnich dwóch dekadach ilość zainstalowanych paneli fotowoltaicznych opartych o technologie półprzewodnikowe wzrosła wykładniczo. W perspektywie najbliższych lat panele fotowoltaiczne staną się odpadami ze względu na koniec czasu eksploatacji. Dlatego konieczne jest już dzisiaj opracowanie skutecznych i zrównoważonych metod przetwarzania paneli fotowoltaicznych, umożliwiających recykling surowców, które wchodzą w ich skład. W niniejszym artykule przedstawiono prognozy dotyczące strumieni paneli wprowadzanych i wycofywanych z rynku oraz przegląd procesów przetwarzania paneli fotowoltaicznych, ze szczególnym uwzględnieniem ogniw krzemowych. Słowa kluczowe: Panele fotowoltaiczne, odnawialne źródła energii, zielona energia, recykling, odzysk metali.
A literature review, with 70 refs., covering the problem of recycling of end-of-life photovoltaic panels and its profitability. The prodn. forecasts of photovoltaic cells, their types and construction with special emphasis on monocrystalline-Si, thin-film (amorphous Si, CdTe-based, Cu-In-Ga selenide, Cu-Zn-Sn sulfide) and concentrated cells were discussed. The components of photovoltaic panels and the content of key elements in them were presented. Thermal, phys. and chem. methods for the disposal of solar panels were discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
71--81
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- Centrum Zaawansowanych Technologii Uniwersytetu im. Adma Mickiewicza, Poznań
autor
- Centrum Zaawansowanych Technologii Uniwersytetu im. Adma Mickiewicza, Poznań
autor
- Centrum Zaawansowanych Technologii Uniwersytetu im. Adma Mickiewicza, Poznań
Bibliografia
- [1] Shin J., Park J., Park N. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells 2017, 162, 1-6.
- [2] https://www.statista.com/statistics/267358/world-installed-power-capacity,04-03-2024.
- [3] https://www.mordorintelligence.com/industry-reports/solar-photovoltaic-market,04-0-2024.
- [4] https://www.are.waw.pl/o-are/aktualnosci/rynek-fotowoltaiki-w-polsce-nowy-raport-instytutu-energetyki-odnawialnej,04-03-2024.
- [5] https://solar-distribution.baywa-re.pl/pl/blog/2023/09/fotowolatika-w-polsce-i-reszcieeuropy/,04-03-2024.
- [6] https://www.rynekelektryczny.pl/moc-zainstalowana-fotowoltaiki-w-polsce/,04-03-2024.
- [7] Xu Y., Li J., Tan Q., Peters A. L., Yang C. Global status of recycling wastesolar panels: A review. Waste management 2018, 75, 450-458.
- [8] D’Adamo I., Miliacca M., Rosa P. Economic feasibility for recycling of waste crystalline silicon photovoltaic modules, International Journal of Photoenergy2017, 4184676, 6 pages.
- [9] Mahmoudi S., Huda N., Alavi Z., Islam M.T., Behnia M. End-of-life photovoltaic modules: A systematic quantitative literature review, Resources, Conservation and Recycling 2019, 146, 1-16.
- [10] Fiandra V., Sannino L., Andreozzi C., Corcelli F., Graditi G.Silicon photo voltaic modules at end-of-life: Removal of polymeric layers and separation of materials, Waste Management 2019, 87, 97-107.
- [11] EUPV Technology Platform, A Strategic Research Agenda for Photovoltaic Solar Energy Technology, 2007 (Technology).
- [12] Smith Y. R., Bogust P.Review of Solar Silicon Recycling, TMS : Energy Technology 2018,463–470.
- [13] Dias P., Veit H.Emerging Photovoltaic Materials: Silicon & Beyond, chapter 3, Recycling Crystalline Silicon Photovoltaic Modules, Book Editor(s):Santosh K. Kurinec, Wiley Online Library, 2018.
- [14] Sica D., Malandrino O., Supino S., Testa M., Lucchetti M. C., Management of end-of-life photovoltaic panels as a step towards a circular economy, Renewable and Sustainable Energy Reviews2018, 82(3) 2934-2945.
- [15] https://www.statista.com/statistics/492755/solar-pv-panels-marketshare-projection-by-cell-technology-globally/,04-03-2024.
- [16] https://www.greenmatch.co.uk/blog/2015/09/types-of-solar-panels,04-03-2024.
- [17] Karzazi Y., Arbouch I. Inorganic photovoltaic cells: Operating principles, technologies and efficiencies, Review. J. Mater. Environ. Sci. 2014, 5(5), 1505-1515.
- [18] Thao J., Wang A. H., Green M. A. 24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiencyPERL cells on FZ substrates, Progress in Photovoltaics: Research and Applications 1999, 7, 471-474.
- [19] Schultz O., Glunz S., W., Willeke G. P. Multicrystalline silicon cells exceeding 20% efficiency, Progress in Photovoltaics : Research and Applications 2004, 12, 553-558.
- [20] Aberle A. G., Overview on SiN surface passivation of crystalline silicon solar cells, Solar Energy Materials and SolarCells 2001, 65, 239-248.
- [21] Duerinckx F., Szlufcik J. Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,Solar Energy Materials and Solar Cells 2002, 72, 231-24.
- [22] Jackson P., Hariskos D. New world record efficiency for Cu(In,Ga) Se2 thin-film solar cells beyond 20%, ProgressPhotovoltaic 2011, 19, 894-897.
- [23] Benagli S., Borrello D., High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor, 24th European Photovoltaic Solar Energy Conference, Hamburg,September 2009.
- [24] Roca P. i Cabarrocas P., Fontcuberta i Morral A., Poissant Y., Growth and optoelectronic properties of polymorphoussilicon thin films, Thin Solid Films 2002, 403-404, 39-46.
- [25] Vetterl O., Finger F., Intrinsic microcrystalline silicon: A new material for photovoltaics, Solar Energy Materials andSolar Cells 2000, 62, 97-108.
- [26] Pearce J. M., Podraza N., Collins R. W., Jones K. M., Wronski C. R. Optimization of open circuit voltage inamorphous silicon solar cells with mixed-phase (amorphous + nanocrystalline) p-type contacts of low nanocrystallinecontent, J. Appl. Phys. 2007, 101, 114301.
- [27] Soohyun K., Chung J. W. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junctiontechnology, Solar Energy Materials and Solar Cells 2013, 119, 26-35.
- [28] Green M. A., Emery K., Hishikawa Y., Solar cell efficiency tables (version 42), Progress in Photovoltaics: Researchand Application 2013, 21, 827-837.
- [29] Wang W., Winkler M. T., Gunawan O., Gokmen T., Todorov T. K., Zhu Y., Mitzi D. B., Device Characteristics ofCZTSSe Thin-Film Solar Cells with 12.6% Efficiency, Advanced Energy Materials 2013, DOI: 10.1002/aenm.201301465 .
- [30] https://www.statista.com/statistics/492755/solar-pv-panels-market-share-projection-by-cell-technology-globally/, 04-03-2024.
- [31] Padoan F.C.S.M., Altimari P., Pagnanelli F.Review Recycling of end of life photovoltaic panels: A chemical prospective on process development Solar energy 2019, 177, 746-761.
- [32] Savvilotidou V., Antoniou A., Gidarakos E. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels, Waste Management 2017, 59, 394–402.
- [33] Dias P., Javimczik S., Benevit M., Veit H., Bernardes A. M. Recycling WEEE: extraction and concentration of silver from waste crystalline silicon photovoltaic modules, Waste Management 2016, 57, 220–225.
- [34] Dias P., Schmidt L., Gomes L. B., Bettanin A., Veit H., Bernardes A. M. Recycling waste crystalline silicon photovoltaic modules by electro static separation, J. Sustain. Metall. 2018, 4(2), 176–186.
- [35] Pern J., Module Encapsulation Materials, Processing and Testing (Presentation) (No. NREL/PR-520-44666), National Renewable Energy Lab.(NREL), Golden, CO (United States), 2008.
- [36] Doi T., Tsuda I., Unagida H., Murata A., Sakuta K., Kurokawa K. Experimental study on PV module recycling with organic solvent method, Solar Energy Materials & Solar Cells 2001, 67, 397-403.
- [37] Xu Y., Li J., Tan Q., Peters A.L., Yang C., Global status of recycling waste solar panels: a review. Waste Management2018, 75, 450–458.
- [38] Berger W., Simon F., Weimann K., Alsema E.A. A novel approach for the recycling of thin film photovoltaic modules. Resour. Conserv. Recycl. 2010, 54, 711–718.
- [39] Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., Toro, L. Recycling of photovoltaic panels by physical operations. Sol. Energy Mat. Sol. Cells 2014, 123, 239–248.
- [40] Zhang J., Lv F., Ma L., Yang L. The status and trends of crystalline silicon PV module recycling treatment methods in Europe and China. Advanced Materials Research 2013, 724-725, 200-204.
- [41] Doni A., Dughiero F. Electrothermal heating process applied to c-Si PV recycling. In: 38th IEEE Photovoltaic Specialists Conference, 2012, 757–762.
- [42] Frisson L., Lieten K., Bruton T., Declercq K., Szlufcik J., De Moor H., Goris M., Benali, A., Aceves O. Recent improvements in industrial PV module recycling. In: 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, 2000.
- [43] Wang T., Hsiao J., Du C. Recycling of materials from silicon base solar cell module. 38th IEEE Photovoltaic Specialists Conference 2355–2358, 2012.
- [44] Nieland S., Neuhaus U., Pfaff T.New approaches for component recycling of crystalline solar modules. In: Electronics Goes Green, Berlin, Germany, 2012.
- [45] Tao J., Yu S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energ. Mat. Sol. C 2015, 141, 108–124.
- [46] Marwede M., Berger W., Schlummer M., Mäurer A., Reller A. Recycling paths for thin-film chalcogenide photovoltaic waste – current feasible processes. Renew. Energ. 2013, 55, 220.
- [47] Pagnanelli F., Moscardini E., Granata G., Abo Atia T., Altimari P., Havlik T., Toron L. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management 2017, 59, 422-431.
- [48] Orac D., Havlik T., Maul A., Berwanger M. Acidic leaching of copper and tin from used consumer equipment, J. Min. Metall. B: Metallurgy 2015, 51(2), 153–161.
- [49] Klugmann-Radziemska E., Ostrowski P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew. Energ. 2010, 35, 1751–1759.
- [50] Palitzsch W., Loser U., 2011a. A new and intelligent de-metalization step of broken silicon cells and silicon cell production waste in the recycling procedure of crystalline Si modules. 37th IEEE Photovoltaic Specialists Conference 3269–3270, 2011.
- [51] Palitzsch W., Loser U., 2011b. Economic PV waste recycling solutions – results from R&D and practice. 37th IEEE Photovoltaic Specialists Conference 628–631, 2011.
- [52] Yi Y.K., Kim H.S., Tran T., Hong S.K., Kim M.J.Recovering valuable metals from recycled photovoltaic modules. J. Air Waste Manage. Assoc. 2014, 64, 797–807.
- [53] Jung B., Park J., Seo D., Park, N. Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. ACS Sustain. Chem. Eng. 2016, 4, 4079–4083
- [54] Kuroiwa K., Ohura S., Morisada S., Ohto K., Kawakita H., Matsuo Y., Fukuda D.Recovery of germanium from waste solar panels using ionexchange membrane and solvent extraction. Miner. Eng. 2014, 55, 181–185.
- [55] Fthenakis V.M., Wang W.Extraction and separation of Cd and Te from cadmium telluride photovoltaic manufacturing scrap. Prog. Photovolt: Res. Appl. 2006, 4, 363–371.
- [56] Wang W., Fthenakis V. Kinetics study on separation of cadmium from tellurium in acidic solution media using ion-exchange resins. J. Hazard. Mater. 2005, B125, 80–88.
- [57] SENSE, 2008. LCA Analysis: University of Stuttgart, Wuerth Solar GmbH, Free Energy Europe SA, Zentrum für Sonnenenergie- und Wasserstoffforschung, Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V., Ambiente Italia srl Fundacion Gaiker.
- [58] Marwede M., Berger W., Schlummer M., Mäurer A., Reller A. Recycling paths for thin-film chalcogenide photovoltaic waste – current feasible processes. Renew. Energ. 2013, 55, 220-229.
- [59] Dattilo M. CI(G)S PV modules: recycling technology status. In: 2nd International Conference on PV Module Recycling, Madrid, Spain, 2011.
- [60] Gustafsson A.M.K., Foreman M.R.St.J., Ekberg C. Recycling of high purity selenium from CIGS solar cell waste materials. Waste Management2014, 34, 1775–1782.
- [61] Gustafsson A.M.K., Steenari B., Ekberg C. Recycling of CIGS solar cell waste materials: separation of copper, indium, and gallium by hightemperature chlorination reaction with ammonium chloride.Sep. Sci, Technol. 2015, 50, 2415–2425.
- [62] Savvilotidou V., Antoniou A., Gidarakos E. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Management2017, 59, 394–402.
- [63] Kang S., Yoo S., Lee J., Boo B., Ryu H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew. Energ. 2012, 47, 152–159.
- [64] Kushiya K., Ohshita M., Tanaka M. Development of recycling and reuse technologies for large-area Cu(1nGa)Se2-based thin-film modules. In: 3rd World Conference on Photovoltaic Energy Conversion, pp. 1892–1895, 2003.
- [65] Huang W., Shin W.J., Wang L., Sun W., Tao M. Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 2017, 144, 22–31.
- [66] First Solar, 2018. First Solar Recycling Brochure. < www.firstsolar.com > (accessed in 02/10/2018).
- [67] International Energy Agency (IEA), 2018. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies.
- [68] Bombach E., Wambach K., Müller A., Röver I.Recycling of solar cells and modules – recent improvements. In: 20th European Photovoltaic Solar Energy Conference, Barcelona, 2005.
- [69] Müller A., Wambach K., Alsema E. Life cycle analysis of a solar module recycling process. In: 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005.
- [70] Nike, Recupero apparecchiature elettriche ed elettroniche, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07539892-6061-49b6-ad72-b45d932818cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.