PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of hyperbaric exposure on vascular endothelium’s capability of nitric oxide synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ ekspozycji hiperbarycznej na zdolność śródbłonka naczyń do syntezy tlenku azotu
Języki publikacji
PL EN
Abstrakty
PL
Praca przedstawia alalię wpływu ekspozycji hiperbarycznych na zdolność śródbłonka naczyń do syntezy tlenku azotu wyrażoną jako pomiar stężenia azotanów/azotynów w surowicy ochotników poddanych ekspozycji hiperbarycznej. Dodatkowo oceniano za pomocą pomiaru stężenia całkowitego stężenia ponadtlenków jaki wpływ na pojemność antyoksydacyjną ma przebywanie w hiperbarii. Wyniki: Zaobserwowano istotnie wyższe stężenie azotanów/azotynów po ekspozycji hiperbarycznej. Podobnie zaobserwowano podwyższone stężenie całkowitego stężenia nadtlenków w badanej grupie. Wnioski: Uzyskane wyniki pokazują, że przebywanie w środowisku hiperbarycznym nie jest obojętne dla komórek śródbłonka. Otwartym pozostaje jednak problem jaki czas i na jakie warunki ciśnieniowe pozostaje bezpieczny.
EN
The paper presents an aphonia of the effects of hyperbaric exposures on endothelial capability to generate nitric oxide synthesis, expressed as a measurement of the concentration of nitrates/nitrites in the blood serum of volunteers subjected to a hyperbaric exposure. In addition the method of measurement of total concentration of superoxides was used to assess the impact of antioxidant capacity while being subjected to hyperbaric oxygenation. Results: A significantly higher concentration of nitrates/nitrites was observed following a hyperbaric exposure. Similarly, an increased concentration of total superoxides in the researched groups was observed. Conclusions: The obtained results indicate that staying in a hyperbaric environment is not insignificant for endothelial cells. However, the issue that stays open is the one concerning the time and the pressure conditions in which the exposure remains safe.
Rocznik
Tom
Strony
7--18
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Katedra i Zakład Biochemii Uniwersytet Mikołaja Kopernika w Toruniu
autor
  • Zakład Dietetyki Ogólnej, Katedra Żywienia Klinicznego, Gdański Uniwersytet Medyczny
  • Katedra i Klinika Geriatrii Uniwersytet Mikołaja Kopernika Collegium Medicum w Bydgoszczy
Bibliografia
  • 1. Tjarnstrom, J., et al., Effects of hyperbaric oxygen on expression of fibrinolytic factors of human endothelium in a simulated ischaemia/reperfusion situation. Scand J Clin Lab Invest, 2001. 61(7): p. 539-45.
  • 2. Snyder, S.H. and D.S. Bredt, Biological roles of nitric oxide. Sci Am, 1992. 266(5): p. 68-71, 74-7.
  • 3. Agil, A., C.J. Fuller, and I. Jialal, Susceptibility of plasma to ferrous iron/hydrogen peroxide-mediated oxidation: demonstration of a possible Fenton reaction. Clin Chem, 1995. 41(2): p. 220-5.
  • 4. Reif, D.W., Ferritin as a source of iron for oxidative damage. Free Radic Biol Med, 1992. 12(5): p. 417-27.
  • 5. Lu, N., et al., Peroxynitrite and heme protein--mediated nitrative/oxidative modification of human plasma protein: the role of free radical scavenging vs. complex forming. Toxicol In Vitro, 2009. 23(7): p. 1227-33. doi: 10.1016/j.tiv.2009.07.034.
  • 6. Gatti, R.M., R. Radi, and O. Augusto, Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Lett, 1994. 348(3): p. 287-90.
  • 7. Giustarini, D., et al., Nitrite and nitrate measurement by Griess reagent in human plasma: evaluation of interferences and standardization. Methods Enzymol, 2008. 440: p. 361-80. doi: 10.1016/S0076-6879(07)00823-3.
  • 8. Guevara, I., et al., Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta, 1998. 274(2): p. 177-88.
  • 9. Giovannoni, G., et al., Adaptation of the nitrate reductase and Griess reaction methods for the measurement of serum nitrate plus nitrite levels. Ann Clin Biochem, 1997. 34 ( Pt 2): p. 193-8.
  • 10. Granger, D.L., et al., Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol, 1996. 268: p. 142-51.
  • 11. Havnes, M.B., A. Mollerlokken, and A.O. Brubakk, The effect of two consecutive dives on bubble formation and endothelial function in rats. Diving Hyperb Med, 2008. 38(1): p. 29-32.
  • 12. Pontier, J.M., F. Guerrero, and O. Castagna, Bubble formation and endothelial function before and after 3 months of dive training. Aviat Space Environ Med, 2009. 80(1): p. 15-9.
  • 13. Brubakk, A.O., et al., A single air dive reduces arterial endothelial function in man. J Physiol, 2005. 566(Pt 3): p. 901-6.
  • 14. Sacks, T., et al., Oxygen radicals mediate endothelial cell damage by complementstimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest, 1978. 61(5): p. 1161-7.
  • 15. Shimamiya, T., et al., Effects of 30-m nitrox saturation dive on the immune system In man. Undersea Hyperb Med, 2006. 33(1): p. 63-8.
  • 16. Stewart, G.J., W.G. Ritchie, and P.R. Lynch, Venous endothelial damage produced by massive sticking and emigration of leukocytes. Am J Pathol, 1974. 74(3): p. 507-32.
  • 17. Sureda, A., et al., Neutrophil tolerance to oxidative stress induced by hypoxia/reoxygenation. Free Radic Res, 2004. 38(9): p. 1003-9.
  • 18. Lund, V., et al., Effect of hyperbaric conditions on plasma stress hormone levels and endothelin-1. Undersea Hyperb Med, 1999. 26(2): p. 87-92.
  • 19. Torii, R., et al., Mechanism for changes in vasopressin during acute exposure at 3 atm ab s air. Am J Physiol, 1997. 273(1 Pt 2): p. R259-64.
  • 20. Slichter, S.J., et al., Dysbaric osteonecrosis: a consequence of intravascular buble formation, endothelial damage, and platelet thrombosis. J Lab Clin Med, 1981. 98(4): p. 568-90.
  • 21. Anggard, E., Nitric oxide: mediator, murderer, and medicine. Lancet, 1994. 343(8907): p. 1199-206.
  • 22. Bryan, N.S., Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med, 2006. 41(5): p. 691-701.
  • 23. Cordes, P., et al., Neurologic outcome of controlled compressed-air diving. Neurology, 2000. 55(11): p. 1743-5.
  • 24. Dejam, A., et al., Emerging role of nitrite in human biology. Blood Cells Mol Dis, 2004. 32(3): p. 423-9.
  • 25. Demchenko, I.T. and C.A. Piantadosi, Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures. Undersea Hyperb Med, 2006. 33(3): p. 169-74.
  • 26. Sato, T., et al., Changes in nitric oxide production and cerebral blood flow before development of hyperbaric oxygen-induced seizures in rats. Brain Res, 2001. 918(1-2): p. 131-40.
  • 27. Elayan, I.M., et al., Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain. J Neurophysiol, 2000. 83(4): p. 2022-9.
  • 28. Chavko, M., G. Xing, and D.O. Keyser, Increased sensitivity to seizures in repeated exposures to hyperbaric oxygen: role of NOS activation. Brain Res, 2001. 900(2): p. 227- 33.
  • 29. Sureda, A., et al., Vitamin C supplementation influences the antioxidant response and nitric oxide handling of erythrocytes and lymphocytes to diving apnea. Eur J Clin Nutr, 2006. 60(7): p. 838-46.
  • 30. Bitterman, N. and H. Bitterman, L-arginine-NO pathway and CNS oxygen toxicity. J Appl Physiol (1985), 1998. 84(5): p. 1633-8.
  • 31. Wang, W.J., et al., Intrasynaptosomal free calcium and nitric oxide metabolism in central nervous system oxygen toxicity. Aviat Space Environ Med, 1998. 69(6): p. 551-5.
  • 32. Labrouche, S., et al., Influence of hyperbaric oxygen on leukocyte functions and haemostasis in normal volunteer divers. Thromb Res, 1999. 96(4): p. 309-15.
  • 33. Lemaitre, F., N. Meunier, and M. Bedu, Effect of air diving exposure generalny encountered by recreational divers: oxidative stress? Undersea Hyperb Med, 2002. 29(1): p. 39-49.
  • 34. Ferrer, M.D., et al., Scuba diving enhances endogenous antioxidant defenses In lymphocytes and neutrophils. Free Radic Res, 2007. 41(3): p. 274-81.
  • 35. Ito, T., et al., Oxidative stress alters arginine metabolism in rat brain: effect of subconvulsive hyperbaric oxygen exposure. Neurochem Int, 1996. 29(2): p. 187-95.
  • 36. Joulia, F., et al., Reduced oxidative stress and blood lactic acidosis in trained breath-hold human divers. Respir Physiol Neurobiol, 2002. 133(1-2): p. 121-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-075276f1-0cbf-4d77-990c-1c1100b598a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.