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The article presents results of research on the calculation of the shape of a mirror 
reflector, which ensures the highest possible average illuminance, and uniformity of 
illuminance. A multiobjective genetic algorithm was used to carry out optimization 
calculations.
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1. Introduction

Constructing an objective with a higher number of objective functions may turn 
out to be necessary, especially when an objective with a single target function, 
supplemented with relevant constraints, fails to describe the posed problem in 
a proper way. Taking into account a higher count of criteria, which are usually 
contradictory to each other and are mutually incalculable, causes a situation where 
they cannot be brought down to a single, scalar criterion. Instead of a single 
objective function (1), a vector of functions is obtained and a search for the optimal 
compromise among them is under way [1].

F(x) = [ (x),F 2 (x),...,Fm(x)] (1)

Increasing the number of objective functions increases the objective's difficulty. 
The designer should properly define the problem by introducing relevant 
expressions that can be described in a natural manner. Multiobjective optimization 
consists in minimizing or maximizing the vector of objective functions, which is 
subject to constraints (2).

min/max F (x), subject to
x e R n

Gj(x) = 0, i = 1,...,ke; Gj(x) < 0, i = ke + 1,...,k; lb < x < ub (2)

In multiobjective optimization a vector of decision variables should be searched 
for, for which all components of the vector of objective function achieve extreme 
values. The objective function is a vector and if any of its components competes 
with another one, then finding an explicit solution will be impossible. Usually, 
each of the components of the vector of objective function achieves its extreme 
value with another vector of decision variables.
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For the purpose of comparing solutions in multiobjective optimization, 
a concept of non-inferior solutions in Pareto meaning is introduced. A non-inferior 
solution is achieved when the improvement of value of one objective function 
causes deterioration of another value. The area Q is assumed in the space of 
x variables, which satisfy all introduced constraints (3).

Q = {x e Rn } subject to
Gj(x) = 0, i = 1,...,ke; Gj(x) < 0, i = ke + 1,...,k; lb < x < ub (3)

The area Q is matched by the area A in the objective's function space, while the 
vector of objective function maps the variables space to the objective's function 
space (4).

A = {y e Rm :y = F(x), x e q ) (4)

Point x1 constitutes a non-inferior solution (dominates over another point x2) if 
both following conditions are satisfied [1]:
1. Point x1 ensures a solution that is not worse than the solution of point x2  for all 

objective functions.
2. Point x1  ensures a solution that better than the solution of point x2  for at least 

one objective function.
Figure 1 presents several non-inferior solutions located on a curve between 

points A and D.
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Fig. 1. Illustration of non-dominated Pareto front

Points B and C are non-dominated pints, because the improvement of the first 
objective function F1 requires the deterioration of the second function F2 (and the 
other way around). Point E does not belong to non-dominated solutions, because it 
fails to satisfy the first of the above conditions for the remaining points. Points A, 
B, C and D dominate over point E. The non-inferior solutions create the so-called 
Pareto set. Since they usually form a certain curve, the phrase "non-dominated
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Pareto front" is also used [1]. Because a genetic algorithm creates a population of 
solutions in every subsequent iteration, then using it in multi-criteria optimization 
for identifying a Pareto set of optimal solutions is very beneficial.

2. Elite selection with the use of niching strategy

The application of elite selection, consisting in the guarantee of survival of non­
dominated individuals, may lead to premature convergence. As early as after just 
several iteration, all individuals may be non-dominated and although they all form the 
elite, they are not necessarily in the vicinity of the real Pareto front. It is suggested to 
use a method based on NSGA-II, where, apart from the protection of elite individuals, 
clear diversification of individuals that make up the Pareto front is maintained [1].

In this method, individuals that fill in the population's unclaimed places 
(following the introduction of individuals from the best front) are selected taking into 
consideration the niching strategy, consisting in selecting points located in the least 
crowded areas of the last front. The procedure has no impact on the algorithm in 
initial iterations. That is because at that time there are numerous non-dominated and 
diverse fronts, which are still far from the optimal one. At that time, it is of little 
importance which individuals are selected to fill up the remaining unclaimed places 
in the new population. On the other hand, in final iterations most of individuals 
belong to the best, non-dominated front. Individuals guaranteeing higher diversity are 
selected for the new population, which consequently leads to a non-dominated front, 
where points that create distributed solutions are more uniform.

The evaluation of crowding is done on the basis of crowding distance dj. It is 
calculated as the average length of the side of a cuboid within which a given solution 
is contained and no other solution from the same, non-dominated front of solutions. 
If the distance is large, the solution is not crowded. Individuals with the highest value 
of crowding distance dj are elected for the remaining unclaimed places in the new 
population. Figure 2 presents a geometric interpretation of the entire expression. The 
value of crowding distance dj is equal to half of the circumference of a rectangle (or 
a cube or cuboid for a higher count of objective functions).
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Fig. 2. Illustration of calculation of crowding distance for the kth point
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Usually, most problems that require solving with a multiobjective evolution 
algorithm are subject to certain constraints (2). In such cases, the space of solutions is 
divided into two areas: the acceptable area and the unacceptable area, and all Pareto- 
optimal solutions must be acceptable. The method employed in this paper consists in 
using tournament selection, wherein a better solution is selected from two solutions 
from a given population. Three cases can be considered: (I) both solutions are 
acceptable, (II) only one solution is acceptable, (III) both solutions are unacceptable.

The definition of domination is replaced with the following phrase: point x1  

"dominates with constraints" over point x2 if any of the following conditions is 
satisfied [1]:
1. Point x1  constitutes an acceptable solution, while point x2  is considered 

unacceptable.
2. Both points constitute unacceptable solutions, but point x1  violates constraints 

to a lesser degree.
3. Both points constitute acceptable solutions and point x1  dominates over point x2  

(in the sense of definitions in chapter 1). If both solutions belong to the same 
front, the solution located in the least crowded area of the front is selected.
Using the above definition, subsequent Pareto fronts "non-dominated with

constraints" are established in a given population (Fig. 2). A tournament selection 
is carried out among two randomly selected points that make up these fronts, with 
the aim of selecting a better solution, as provided for in the above criteria. After the 
first series of selections, pairs are chosen at random again and a better solution is 
selected again. Points selected in two series create a mating pool. The best 
individuals have a high chance to appear there in several instances, and the worst 
one - in none. The mating pool is of the same size as the population.

3. Model of reflector

The reflector profile is described with Hermite interpolation where shape 
preservation is achieved with Fritsch-Carlson method [2, 3]. Points P1, P2, P3, P4 
and P5 (Fig. 3) are interpolation nodes through which a curve that describes the 
reflector's profile passes. The optimization algorithm whose subsequent steps are 
to lead to find the objective function minimum changes the values of decision 
variable Ci (relevant coordinates of points P2̂ P5).Point P1 does not change its 
position, whereas the remaining four points change their locations both in X2 (x2i) 
axis and in X1 (x1i) axis. In this case, the operation of the optimization algorithm 
may result in the change of height and width of the reflector. The identification of 
location of interpolation nodes in X1  axis is done with a single variable dx1  that is 
responsible for changing the value of coordinate x15 of point P5.The coordinates of 
the remaining points are calculated taking into account identical distance Ax1 in 
axis X1 between the subsequent points. In this case, the optimization algorithm 
operates on five variables (x22, x2 3, x24, x2 5, dx1).
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Fig. 3. Reflector profile, presentation of conditions limiting the location of interpolation nodes

The reflector features a top opening and a bottom opening shaped like a square. 
The shape of the four walls is generated by a profile curve described with Hermite 
interpolation. In the top opening, a model of the so-called LED module is placed, 
whose parameters match the technical specification of Fortimo LED DLM 2000 
module. The module's illuminating element is a circle-shaped surface, 6 cm in 
diameter, covered in luminophore. The light beam distribution of this surface is 
almost Lambertian [4].

4. Optimization of reflector’s shape

The genetic algorithm uses three main operations at each stage of creating 
a new generation from the current population [5]:
-  selection (selection of parents from individuals in a given population),
-  crossover (pairing parents to create individuals for the subsequent generation),
-  mutation (introduction of random changes to selected parents).

The following solutions have been used for this paper [6]:
-  floating point representation - for approximating the algorithm to the objective's 

space, two points located close to each other in the representation space will 
also be close to each other in the objective's space,

-  scaling of objective function by appointing ranks equalizes the score of less 
adapted individuals, while maintaining a high diversity within the population,

-  elite selection carries over to the next generation the entire, non-dominated and 
best Pareto front; the remaining free spaces in the population are for individuals 
created by their parents through crossing and mutation,
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-  heuristic crossover and mutations with Gaussian distribution (magnitude of 
mutation decreases with each new generation),

-  the number of individuals in population is 25, the number of generations is 100. 
A proprietary method with algorithm for ray tracing, implemented in Radiance

system [7], was used for calculating photometric parameters (luminous intensity, 
illuminance). This method was described in several publications [8], which also 
presented results of calculations of luminaires with optical elements of various 
photometric properties.

The optimization objective consisted in finding a reflector shape that would 
allow to achieve the highest possible mean illuminance value Eav, while 
maintaining proper uniformity ratio of illuminance in the illuminated surface (ratio 
of minimal illuminance Emin to mean illuminance Eav). The reflector illuminates 
a square-shaped surface, whose side is 3 m long. The luminaire model is located 
3 m over the middle of this surface.

The optimization was carried out for two objective functions (5).

F1 (x ) = -  E av (5)
F2 (x) = -100(E m m /E av  ) ( )

As the optimization algorithm searches for the function's minimal value, and the 
posed objective aims to maximize, a minus was inserted in the objective function's 
formula.

The following constraints were applied to the objective's function space:
1. Constraints applied to domain lb < x2 i < ub :

-  their purpose is to make the curve describing the reflector profile convex 
upwards, the values of points x2i determining the coordinates in axis X2 may 
alter within boundaries specified by straight lines ub and lb (Fig. 3).

2. Linear inequality constraints Gi(x) < 0:
-  the curve describing the reflector's profile should remain monotone across 

the entire interval; creating a reflector's profile whose curve is not monotone 
may lead to longer calculations by extending the searching area with area 
where the optimal solution is not found,

-  point P3  should be located below straight line G1  (the straight line passes 
points Pi and P2), point P4 below straight line G2, and point P5 below straight 
line G3 (Fig. 3).

5. Calculation results

Figure 4 presents results of calculations carried out pursuant to the above 
described niching strategy.

A single, specific solution is not obtained and after completion of the 
optimization process, extra-optimization procedures, allowing the selection of
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a determined result from a series of points, should be used. Optimization with 
penalty function used to be applied in previous tests [4]. A criterion of penalizing 
individuals for whom the uniformity ratio of illuminance is below 70% was 
assumed at that time. In the case of the posed objective it seems obvious that 
increasing the uniformity ratio (function F2) will result in decreasing the 
illuminance (function F1). Assuming the above criterion, a solution located as close 
as possible to point F2 (x) = -70 should be sought.

20 r

-40

-60

-SO
ooo

- 
oooo

Doo

: : %O
O  ' 

%
°o 0

o

-180 -160 -140 -120 -100 -80 -60 
Fl(x)

Fig. 4. Pareto front obtained with the use of niching strategy

Figure 5 presents results of calculations carried out with niching strategy. The 
algorithm was supplemented with a selection function, serving to limit the searched 
range of values of function F2(x) to the range from -60 to -80 (outside this range, 
values F2(x) are equated to zero).Limiting the values of objective function leads to 
increasing the diversity of obtained solutions in the expected area. This strategy 
allows to obtain results that are not worse, without changing the number of 
individuals in the population.
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Fig. 5. The Pareto front obtained with the use of niching strategy and constraining the searched range
of function values F2(x)
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Figure 6 presents results of calculations carried out without niching strategy. 
When comparing these results with results obtained with the application of niching 
strategy, it can be seen that a slightly worse distribution of points in Pareto front 
was achieved, mainly due to fewer points present in the last, best front. The 
relatively similar uniformity ratio of distribution of points in Pareto fronts proves 
that niching strategy has a comparatively weak impact on this parameter. This 
happens because the objective itself leads to obtaining a high diversity of results. 
For a reflector with smooth surface, even a slight change of shape may have 
a significant impact on the change of luminous intensity distribution.
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Fig. 6. Pareto front obtained without niching strategy

Table 1 presents results of calculations obtained for four various algorithms. 
The following were provided (negatives changed into positives): values of 
objective function, number of individuals creating the last, non-dominated Pareto 
front NP, CPU time and the relation of the number of iterations to calculation time.

Table 1. List of calculation results

l p Algorithm name Fi(x) F2(X) NP CPU
[s]

Number 
of iterations to 

calculation time
1 Niching strategy 104 71 25 3430 0.73
2 Niching strategy with constraint 

of range of function F2 115 70 25 3519 0.71

3 Without niching strategy 107 72 20 3549 0.70
4 Penalty function 108 71 - 7340 0.61

The best result was obtained for the algorithm with niching strategy and 
constraint of range function F2. At the same time, this algorithm ensures the highest
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diversity of results in the expected range of solutions. The parameter that gives the 
value of the number of iterations to the calculation time shows a slight 
deterioration in the efficiency of the multiobjective optimization algorithm in 
relation to singleobjective optimization with penalty function [4].

Figure 7 presents calculated illuminance distribution for the square surface with 
side length 3 meters and luminous intensity distribution for reflector obtained for 
algorithm with niching strategy and constraint of range function F2.
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180‘

Fig. 7. The calculated illuminance distribution isoluxes for the square surface with side length 3 
meters; luminous intensity curve, solid line -  C0-C180 surface, broken line -  C45-C225 surface

6. Conclusions

The completed tests show that the proposed method of optimization of the 
reflector's shape may be successfully used with the application of multiobjective 
optimization. Although the algorithm's efficiency decreased in relation to 
calculations using penalty function, ultimately, a better result was obtained in less 
time. The multiobjective optimization requires the use of extra-optimization criteria 
for the selection of the final solution. At the same time, a set of results is obtained, 
which can be analyzed in terms of cost effectiveness of execution.
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