Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The heterostructure consisting of graphene and two-dimensional (2D) crystalline molybdenum trioxide (MoO₃) layers was fabricated through a wet transfer method using a polymer to transfer the MoO₃ layers from the mica crystal surface. Using a heating plate method, this crystalline MoO₃ was initially grown on mica under normal atmospheric air conditions. Furthermore, the authors demonstrated that the only MoO₃ phase forms on the molybdenum foil following annealing in air, as confirmed by X-ray photoelectron spectroscopy (XPS) study. The resulting graphene heterostructure was examined using optical and atomic force microscopy (AFM). The fabrication method introduced here offers a cost-effective alternative to the more costly and complex ultra-high vacuum techniques used for epitaxial layer fabrication. This graphene heterostructure holds potential as a conductive and transparent anode for the organic light-emitting diode (OLED) technology.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e154308
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Molecular Physics, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
Bibliografia
- [1] Zeng, M., Xiao, Y., Liu, J., Yang, K. & Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 118, 6236-6296 (2018). https://doi.org/10.1021/acs.chemrev.7b00633.
- [2] Shanmugam, V. et al. A review of the synthesis, properties, and applications of 2D materials. Part. Part. Syst. Charact. 39, 2200031 (2022). https://doi.org/https://doi.org/10.1002/ppsc.202200031.
- [3] Glavin, N. R. et al. Emerging applications of elemental 2D materials. Adv. Mat. 32, 1904302 (2020). https://doi.org/https://doi.org/10.1002/adma.201904302.
- [4] Kwon, O. E. et al. A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Disp. 21, 49-56 (2020). https://doi.org/10.1080/15980316.2019.1680452.
- [5] Meyer, J. et al. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mat. 24, 5408-5427 (2012). https://doi.org/10.1002/adma.201201630.
- [6] Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. Tuning the work function of graphene toward application as anode and cathode. J. Alloys Compd. 805, 1117-1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187.
- [7] Krukowski, P. et al. Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics. Opto-Electron. Rev. 30, e141953 (2022). https://doi.org/10.24425/opelre.2022.141953.
- [8] Yang, N. et al. Design and adjustment of the graphene work function via size, modification, defects, and doping: A first-principle theory study. Nanoscale Res. Lett. 12, 642 (2017). https://doi.org/10.1186/s11671-017-2375-3.
- [9] Krukowski, P. et al. Characterisation of a graphene/NPB structure with Re2O7 as an interfacial layer for OLED application. Opto-Electron. Rev. 32, e147913 (2024). https://doi.org/10.24425/opelre.2024.148441.
- [10] Kowalczyk, D. A. et al. Local electronic structure of stable monolayers of α-MoO3-x grown on graphite substrate. 2D Mater. 8, 25005 (2020). https://doi.org/10.1088/2053-1583/abcf10.
- [11] Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: The case of monolayer MoO3. ACS Appl. Mater. Interfaces 14, 44506-44515 (2022). https://doi.org/10.1021/acsami.2c09946.
- [12] Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Prz. Elektrotech. 98, 117-120 (2022). [in Polish] https://doi.org/10.15199/48.2022.02.26.
- [13] Nadolska, A. et al. Electrostimulation and nanomanipulation of two-dimensional MoO3-x layers grown on graphite. Crystals (Basel) 13, 905 (2023). https://doi.org/10.3390/cryst13060905.
- [14] Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Adv. Eng. Mater. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955.
- [15] Gong, Y. et al. Diverse applications of MoO3 for high performance organic photovoltaics: fundamentals, processes and optimization strategies. J. Mater. Chem. A 8, 978-1009 (2020). https://doi.org/10.1039/C9TA12005J.
- [16] Morita, M. et al. Chromogenic amorphous MoO3–x nanosheets and their nanostructured films for smart window applications. ACS Appl. Nano Mater. 4, 8781-8788 (2021). https://doi.org/10.1021/acsanm.1c01428.
- [17] Avani, A. V & Anila, E. I. Recent advances of MoO3 based materials in energy catalysis: Applications in hydrogen evolution and oxygen evolution reactions. Int. J. Hydrog. Energy 47, 20475-20493 (2022). https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.04.252.
- [18] Al-Alotaibi, A. L. et al. Synthesis and characterization of MoO3 for photocatalytic applications. J. Inorg. Organomet. P. 31, 2017-2029 (2021). https://doi.org/10.1007/s10904-021-01939-w.
- [19] Tang, K., Farooqi, S. A., Wang, X. & Yan, C. Recent progress on molybdenum oxides for rechargeable batteries. ChemSusChem 12, 755-771 (2019). https://doi.org/https://doi.org/10.1002/cssc.201801860.
- [20] Malik, R., Joshi, N. & Tomer, V. K. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: A holistic review. Mater. Adv. 2, 4190-4227 (2021). https://doi.org/10.1039/D1MA00374G.
- [21] Li, Y. et al. Ultrathin MoO3 layers in composite metal electrodes: Improved optics allow highly efficient organic light-emitting diodes. Adv. Opt. Mater. 7, 1801262 (2019). https://doi.org/https://doi.org/10.1002/adom.201801262.
- [22] Arash, A. et al. Large-area synthesis of 2D MoO3-x for enhanced optoelectronic applications. 2D Mater. 6, 35031 (2019). https://doi.org/10.1088/2053-1583/ab1114.
- [23] Molina-Mendoza, A. J. et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mat. 28, 4042-4051 (2016). https://doi.org/10.1021/acs.chemmater.6b01505.
- [24] Wang, D. et al. Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness. Appl. Phys. Lett. 108, 053107 (2016). https://doi.org/10.1063/1.4941402.
- [25] Carrascoso, F. et al. Direct transformation of crystalline MoO3 into few-layers MoS2. Materials 13, 2293 (2020). https://doi.org/10.3390/ma13102293.
- [26] Puebla, S. et al. In-plane anisotropic optical and mechanical properties of two-dimensional MoO3. NPJ 2D Mater. Appl. 5, 37 (2021). https://doi.org/10.1038/s41699-021-00220-5.
- [27] Zhang, C. et al. Modified hot plate method for synthesizing MoO3 nanoplates. Chin. J. Chem. Phys. 36, 242-248 (2023). https://doi.org/10.1063/1674-0068/cjcp2111238.
- [28] Puebla, S., Mariscal-Jiménez, A., Galán, R. S., Munuera, C. & Castellanos-Gomez, A. Optical-based thickness measurement of MoO3 nanosheets. Nanomaterials 10, 1272 (2020). https://doi.org/10.3390/nano10071272.
- [29] Strupinski, W. et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 11, 1786-1791 (2011). https://doi.org/10.1021/nl200390e.
- [30] Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53-68 (2018). https://doi.org/10.1039/C7CS00556C.
Uwagi
1. This work was financially supported by the National Science Centre (Poland) under grant 2020/37/B/ST5/03929.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07480789-19c1-4438-9711-29c6aefe63be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.