PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Root surface temperature measurement during root canal obturation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pomiar temperatury powierzchni korzenia podczas obturacji kanałów korzeniowych
Języki publikacji
EN
Abstrakty
EN
Prolonged exposure to elevated temperatures exceeding 47°C, which can occur during root canal obturation, can cause damage of both dental and bone tissues. In order to study the temperature distribution on the surface of the tooth root a temperature measuring device with cold-junction compensation is proposed. For in vitro measurement of the temperature distribution on the surface of the tooth, 8 thermocouples placed in direct contact with the cementum of the tooth were used. In order to eliminate the cold-junction temperature variations, the temperature equilibration device and RTD were used. The suggested linear approximation for the thermocouples' conversion function provides a nonlinearity relative error of less than 0.05% for K-type thermocouples and 0.07% for J-type thermocouples over the temperature range from 20 to 60°C.
PL
Długotrwała ekspozycja na podwyższone temperatury przekraczające 47°C, które mogą wystąpić podczas wypełniania kanałów korzeniowych, może spowodować uszkodzenie zarówno tkanek zęba, jak i kości. W celu zbadania rozkładu temperatury na powierzchni korzenia zęba zaproponowano urządzenie do pomiaru temperatury z kompensacją zimnego złącza. Do pomiaru in vitro rozkładu temperatury na powierzchni zęba wykorzystano 8 termopar umieszczonych w bezpośrednim kontakcie z cementem zęba. W celu wyeliminowania wahania temperatury zimnego złącza zastosowano urządzenie do wyrównania temperatur oraz czujnik rezystancyjny RTD. Proponowana aproksymacja liniowa funkcji przetwarzania termopary zapewnia względny błąd nieliniowości mniejszy niż 0,05% dla termopar typu K i 0,07% dla termopar typu J w zakresie temperatur od 20 do 60°C.
Rocznik
Strony
95--98
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
  • Lviv Polytechnic National University, Department of Electronic Engineering, Lviv, Ukraine
autor
  • Danylo Halytsky Lviv National Medical University, Department of Medical Informatics, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Electronic Engineering, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Electronic Engineering, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Measuring Information Technology, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Measuring Information Technology, Lviv, Ukraine
  • Danylo Halytsky Lviv National Medical University, Department of Medical Informatics, Lviv, Ukraine
Bibliografia
  • [1] Anandanatarajan R., Mangalanathan U., Gandhi U.: Deep Neural Network Based Linearization and Cold Junction Compensation of Thermocouple. IEEE Transactions on Instrumentation and Measurement 72, 2022, 1–9.
  • [2] Balagopal S. et al.: Evaluation of remaining dentin thickness around the prepared root canals and its influence on the temperature changes on the external root surfaces during different heated gutta-percha obturation techniques. Indian Journal of Dental Research 31(6), 2020, 857–861.
  • [3] Bhandi S. et al.: Complete obturation–cold lateral condensation vs. thermoplastic techniques: a systematic review of micro-CT studies. Materials 14(14), 2021, 4013.
  • [4] Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating, Przegląd elektrotechniczny 2019(5), 2019, 110–113.
  • [5] Diegritz C., Gerlitzki O., Fotiadou C., Folwaczny M.: Temperature changes on the root surface during application of warm vertical compaction using three different obturation units. Odontology 108, 2020, 358–365.
  • [6] Donnermeyer D., Schäfer E., Bürklein S.: Real-time intracanal temperature measurement during different obturation techniques. Journal of endodontics 44(12), 2018, 1832–1836.
  • [7] Epley S. R., Fleischman J., Hartwell G., Cicalese C.: Completeness of Root Canal Obturations: Epiphany Techniques versus Gutta-Percha Techniques. J. Endod. 32, 2006, 541–544.
  • [8] García-Cuerva M. et al.: Root surface temperature variation during mechanical removal of root canal filling material. An in vitro study. Acta odontologica latinoamericana – AOL 30(1), 2017.
  • [9] Hotra O.: Microprocessor temperature meter for dentistry investigation. Przegląd Elektrotechniczny 86 (7), 2010, 63–65.
  • [10] Hotra O.: Transistor-based temperature measuring device. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 10(2), 2020, 4–7.
  • [11] Hotra O., Boyko O., Zyska T.: Improvement of the operation rate of medical temperature measuring devices. Proc. SPIE 92914, 2014, 92910A-92910A–6.
  • [12] Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proc. SPIE 9662, 2015, 966247-966247–8.
  • [13] Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przeglad elektrotechniczny 4a, 2012, 169–171.
  • [14] Izhar U., Piyathilaka L., Preethichandra D. M. G.: Sensors for brain temperature measurement and monitoring–a review. Neuroscience Informatics 2(4), 2022, 100106.
  • [15] Lee F. S., Van-Cura J. E., Begole E. A.: A comparison of root surface temperatures using different obturation heat sources. Journal of Endodentistry 24, 1998, 617–620.
  • [16] Maseko M. L., Agee J. T., Davidson I.: Thermocouple signal conditioning using augmented device tables and table look-up neural networks, with validation in J-Thermocouples. IEEE 30th Southern African Universities Power Engineering Conference – SAUPEC, 2022, 1–4.
  • [17] Mena-Álvarez J. et al.: Comparative Analysis of Temperature Variation with Three Continuous Wave Obturation Systems in Endodontics: An In Vitro Study. Applied Sciences 12(12), 2022, 6229.
  • [18] Mukherjee A. et al.: An analog signal conditioning circuit for thermocouple temperature sensor employing thermistor for cold junction compensation. International conference on control, automation, robotics and embedded systems (care) 2013, 1–5.
  • [19] Radeva E. et al.: Evaluation of the apical seal after post space preparation: in vitro study. Journal of IMAB–Annual Proceeding Scientific Papers 25(1), 2019, 2327–2331.
  • [20] Radeva E. et al.: Temperature changes on the external root surface during post space preparation (in vitro study). Journal of IMAB–Annual Proceeding Scientific Papers 23(4), 2017, 1839–1844.
  • [21] Seung M., Choi W., Hur S., Kwon I.: Cold Junction Compensation Technique of Thermocouple Thermometer Using Radiation-Hardened-by-Design Voltage Reference for Harsh Radiation Environment. IEEE Transactions on Instrumentation and Measurement 71, 2022, 1–7.
  • [22] Simeone M. et al.: Temperature Profiles Along the Root with Gutta-percha Warmed through Different Heat Sources. The Open Dentistry Journal 8, 2014, 229.
  • [23] Singla M., Aggarwal V., Sinha N.: External root surface temperature changes during high-temperature injectable thermoplasticized root canal obturation in simulated immature teeth. Saudi Endodontic Journal 10(1), 2020, 51–55.
  • [24] Sivakumar A. A. et al.: Evaluation of temperature change in the root surface during post space preparation using two different drill systems – An invitro study. IOSR Journal of Dental and Medical Sciences 20 (10), 2021, 01–06.
  • [25] Wei G., Wang X., Sun J.: Signal processing method with cold junction compensation for thermocouple. IEEE Instrumentation and Measurement Technology Conference 2009, 1458–1462.
  • [26] Weller R. N. et al., A new model system for measuring intra-canal temperatures. Journal of Endodentistry 17, 1991, 491–494.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-073d2a1e-46a3-4b39-83f5-9e7301a1653d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.