PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bearing capacity of embedded and skirted E-shaped footing on layered sand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study is to investigate the ultimate bearing capacity of the embedded and skirted E-shaped footing resting on two layered sand using finite element method. The analysis was carried out by using ABACUS software. Design/methodology/approach: The numerical study of the ultimate bearing capacity of the embedded and skirted E-shaped footing resting on layered sand and subjected to vertical load was carried out using finite element analysis. The layered sand was having an upper layer of loose sand of thickness H and lower layer was considered as dense sand of infinite depth. The various parameters varied were the friction angle of the upper (30° to 34°) and lower (42° to 46°) layer of sand, the skirt depth (0B, 0.25B, 0.5B and 1B), the embedment depth (0B, 0.25B, 0.5B and 1B) and the thickness (0.5B, 2B and 4B) of the upper sand layer, where B is the width of the square footing. Findings: The ultimate bearing capacity was higher for the skirted E-shaped footing followed by embedded E-shaped footing and unskirted E-shaped footing in this order for all combinations of variables studied. The improvement in the ultimate bearing capacity for the skirted E-shaped footing in comparison to the embedded E-shaped footing was in the range of 0.31 % to 61.13 %, 30.5 % to 146.31 % and 73.26 % to 282.38% corresponding to H/B ratios of 0.5, 2.0 and 4.0 respectively. The highest increase (283.38 %) was observed at φ1 =30° and φ2 =46° corresponding to H/B and Ds/B ratio of 4.0 and 1.0 respectively while the increase was lowest (0.31 %) at φ1 =34° and φ2 =46° at H/B ratio of 0.5 and Ds/B ratio of 0.5. For the skirted E-shaped footing, the lateral spread was more as in comparison to the embedded E-shaped footing. The bearing capacity of the skirted footing was equal the sum of bearing capacity of the surface footing, the skin resistance developed around the skirt surfaces and tip resistance of the skirt with coefficient of determination as 0.8739. The highest displacement was found below the unskirted and embedded E-shaped footing, and at the skirt tip in the case of the skirted E-shaped footing. Further, the displacement contours generated supports the observations of the multi-edge embedded and skirted footings regarding the ultimate bearing capacity on layered sands. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on E shaped footing made from a square footing of size 1.5 m x 1.5 m. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size E shaped footing. Practical implications: The proposed numerical study can be an advantage for the architects designing similar types of super structures requiring similar shaped footings. Originality/value: No numerical study on embedded and skirted E shaped footing resting on layered sand (loose over dense) were conducted so far. Hence, an attempt was made in this article to estimate the bearing capacity of the same footings.
Rocznik
Strony
5--23
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology, Hamirpur, India
autor
  • Department of Civil Engineering, National Institute of Technology, Hamirpur, India
Bibliografia
  • [1] B. Bienen, C. Gaudin, M.J. Cassidy, L. Rausch, O.A. Purwana, H. Krisdani, Numerical modelling of a hybrid foundation under combined loading, Computers and Geotechnics 45 (2012) 127-139. DOI: https://doi.org/10.1016/j.compgeo.2012.05.009
  • [2] J. Kumar, V.N. Khatri, A. Kumar, Performance of skirted and embedded circular footing on sand, Proceedings of the 2nd ASCE International Conference, 2020.
  • [3] S.K. Vanapalli, F.M.O. Mohamed, Bearing capacity and settlement of footings in unsaturated sands, International Journal of GEOMATE 5/1 (2013) 595-604.
  • [4] Adarsh Thakur, Rakesh Kumar Dutta, A study on bearing capacity of skirted square footings on different sands, Indian Geotechnical Journal 50 (2020) 1057-1073. DOI: https://doi.org/10.1007/s40098-020-00440-4
  • [5] A.K. Nazir, W.R. Azzam, Improving the bearing capacity of footing on soft clay with sand pile with/without skirts, Alexandria Engineering Journal 49/4 (2010) 371-377. DOI: https://doi.org/10.1016/j.aej.2010.06.002
  • [6] A.Z. EL Wakil, Horizontal capacity of skirted circular shallow footings on sand, Alexandria Engineering Journal 49/4 (2010) 379-385. DOI: https://doi.org/10.1016/j.aej.2010.07.003
  • [7] A.Z. EL Wakil, Bearing capacity of Skirt circular footing on sand, Alexandria Engineering Journal 52/3 (2013) 359-364. DOI: https://doi.org/10.1016/j.aej.2013.01.007
  • [8] H.T. Eid, Bearing capacity and settlement of skirted shallow foundations on sand, International Journal of Geomechanics 13/5 (2013) 645-652. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000237
  • [9] H.T. Eid, O.A. Alansari, A.M. Odeh, M.N. Nasr, H.A. Sadek, Comparative study on the behavior of square foundations resting on confined sand, Canadian Geotechnical Journal 46/4 (2009) 438-453. DOI: https://doi.org/10.1139/T08-134
  • [10] V.N. Khatri, S.P. Debbarma, R.K. Dutta, B. Mohanty, Pressure-settlement behavior of square and rectangular skirted footings resting on sand, Geomechanics and Engineering 12/4 (2017) 689-705. DOI: https://doi.org/10.12989/gae.2017.12.4.689
  • [11] A.E. Elsaied, N.M. Saleh, M.E. Elmashad, Behavior of Circular Footing resting on Laterally Confined Granular Reinforced Soil, HBRC Journal 11/2 (2015) 240-245. DOI: https://doi.org/10.1016/j.hbrcj.2014.03.011
  • [12] G. Sajjad, M. Masoud, Study of the behaviour of skirted shallow foundations resting on sand, International Journal of Physical Modelling in Geotechnical Engineering 18/3 (2018) 117-130. DOI: https://doi.org/10.1680/jphmg.16.00079
  • [13] M.Y. Al-Aghbari, Y.E.-A. Mohamedzein, The use of skirts to improve the performance of a footing on sand, International Journal of Geotechnical Engineering 14/2 (2020) 134-141. DOI: https://doi.org/10.1080/19386362.2018.1429702
  • [14] M.Y. Al-Aghbari, R.K. Dutta, Performance of square footing with structural skirt resting on sand, Geomechanics and Geoengineering 3/4 (2008) 271-277. DOI: https://doi.org/10.1080/17486020802509393
  • [15] M.Y. Al-Aghbari, Settlement of shallow circular foundations with structural skirts resting on sand, The Journal of Engineering Research [TJER] 4/1 (2007) 11-16. DOI: https://doi.org/10.24200/tjer.vol4iss1pp11-16
  • [16] A.M. Hanna, Finite element analysis of footings on layered soils, Mathematical Modelling 9/11 (1987) 813-819. DOI: https://doi.org/10.1016/0270-0255(87)90501-X
  • [17] A.M. Hanna, Bearing capacity of foundations on a weak sand layer overlying a strong deposit, Canadian Geotechnical Journal 19/3 (1982) 392-396. DOI: https://doi.org/10.1139/t82-043
  • [18] A. Mosadegh, H. Nikraz, Bearing capacity evaluation of footing on a layered‐soil using ABAQUS, Journal of Earth Science & Climatic Change 6/3 (2015) 264. DOI: https://doi.org/10.4172/2157-7617.1000264
  • [19] A. Gupta, R.K. Dutta, R. Shrivastava, Ultimate bearing capacity of square/rectangular footing on layered soil, Indian Geotechnical Journal 47/3 (2017) 303-313. DOI: https://doi.org/10.1007/s40098-017-0233-y
  • [20] G.G. Meyerhof, Ultimate bearing capacity of footings on sand layer overlying clay, Canadian Geotechnical Journal 11/2 (1974) 223-229. DOI: https://doi.org/10.1139/t74-018
  • [21] J.S. Shiau, A.V. Lyamin, S.W. Sloan, Bearing capacity of a sand layer on clay by finite element limit analysis, Canadian Geotechnical Journal 40/5 (2003) 900-915. DOI: https://doi.org/10.1139/t03-042
  • [22] M. Georgiadis, A. Michalopoulos, Bearing capacity of gravity bases on layered soil, Journal of the Geotechnical Engineering 111/6 (1985) 712-729. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:6(712)
  • [23] M.J. Kenny, K.Z. Andrawes, The bearing capacity of footings on a sand layer overlying soft clay, Geotechnique 47/2 (1997) 339-345. DOI: https://doi.org/10.1680/geot.1997.47.2.339
  • [24] M.D. Shoaei, A. Alkarni, J. Noorzaei, M.S. Jaafar, B.B.K. Huat, Review of available approaches for ultimate bearing capacity of two-layered soils, Journal of Civil Engineering and Management 18/4 (2012) 469-482. DOI: https://doi.org/10.3846/13923730.2012.699930
  • [25] V. Panwar, R.K. Dutta, Numerical study of ultimate bearing capacity of rectangular footing on layered sand, Journal of Achievements in Materials and Manufacturing Engineering 101/1 (2020) 15-26. DOI: https://doi.org/10.5604/01.3001.0014.4087
  • [26] Z. Szypcio, K. Dołżyk, The bearing capacity of layered subsoil, Studia Geotechnica et Mechanica XXVIII/1 (2006) 45-60.
  • [27] P.P. Das, V.N. Khatri, R.K. Dutta, Bearing capacity of ring footing on weak sand layer overlying a dense sand deposit, Geomechanics and Geoengineering 16/4 (2021) 249-262. DOI: https://doi.org/10.1080/17486025.2019.1664775
  • [28] Y. Hu, M.F. Randolph, P.G. Watson, Bearing capacity response of skirted foundation on non-homogenous soils, Journal of Geotechnical and Geoenvironmental Engineering 125/11 (1999) 924-935. DOI: https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924)
  • [29] V.N. Khatri, J. Kumar, Finite-element limit analysis of strip and circular skirted footings on sand, International Journal of Geomechanics 19/3 (2019). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001370
  • [30] M. Laman, A. Yildiz, Numerical studies of ring foundations on geogrid-reinforced sand, Geosynthetics International 14/2 (2007) 52-64. DOI: https://doi.org/10.1680/gein.2007.14.2.52
  • [31] S. Alzabeebee, Dynamic response and design of a skirted strip foundation subjected to vertical vibration, Geomechanics and Engineering 20/4 (2020) 345-358. DOI: https://doi.org/10.12989/gae.2020.20.4.345
  • [32] Y. Turedi, B. Emirler, M. Ornek, A. Yildiz, Determination of the bearing capacity of model ring footings: experimental and numerical investigations, Geomechanics and Engineering 18/1 (2019) 29-39. DOI: https://doi.org/10.12989/gae.2019.18.1.029
  • [33] D.R. Phatak, D.J. Khamkar, E.A. Dickin, R. Nazir, Moment-carrying capacity of short pile foundations in cohesionless soil, Journal of Geotechnical and Geoenvironmental Engineering 125/1 (1999) 1-10. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(581)
  • [34] J. Li, Y. Tian, M.J. Cassidy, Failure mechanism and bearing capacity of footings buried at various depths in spatially random soil, Journal of Geotechnical and Geoenvironmental Engineering 141/2 (2015) 04014099. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001219
  • [35] V.C. Joshi, R.K. Dutta, R. Shrivastava, Ultimate bearing capacity of circular footing on layered soil, Journal of Geoengineering 10/1 (2015) 25-34. DOI: http://dx.doi.org/10.6310/jog.2015.10(1).4
  • [36] T. Gnananandarao, R.K. Dutta, V.N. Khatri, Model studies of plus and double box shaped skirted footings resting on sand, International Journal of Geo-Engineering 11 (2020) 2. DOI: https://doi.org/10.1186/s40703-020-00109-0
  • [37] T. Gnananandarao, V.N. Khatri, R.K. Dutta, Performance of multi-edge skirted footings resting on sand, Indian Geotechnical Journal 48 (2018) 510-519. DOI: https://doi.org/10.1007/s40098-017-0270-6
  • [38] A. Thakur, R.K. Dutta, Experimental and numerical studies of skirted hexagonal footings on three sands, SN Applied Sciences 2 (2020) 487. DOI: https://doi.org/10.1007/s42452-020-2239-9
  • [39] T. Gnananandarao, V.N. Khatri, R.K. Dutta, Pressure settlement ratio behavior of plus shaped skirted footing on sand, Journal of Civil Engineering (IEB) 46/2 (2018) 161-170.
  • [40] B. Davarci, M. Ornek, Y. Turedi, Model studies of multi-edge footings on geogrid-reinforced sand, European Journal of Environmental and Civil Engineering 18/2 (2014) 190-205. DOI: https://doi.org/10.1080/19648189.2013.854726
  • [41] B. Davarci, M. Ornek, Y. Turedi, Analyses of multi-edge footings rested on loose and dense sand, Civil Engineering 58/4 (2014) 355-370. DOI: https://doi.org/10.3311/PPci.2101
  • [42] M. Ghazavi, H. Mirzaeifar, Bearing capacity of multi-edge shallow foundations on geogrid-reinforced sand, Proceedings of the 4th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, Iran, 2010, 1-9.
  • [43] A. Thakur, R.K. Dutta, A study of bearing capacity of skirted octagonal footings resting on different sands, Archives of Materials Science and Engineering 107/1 (2021) 21-31. DOI: https://doi.org/10.5604/01.3001.0014.8191
  • [44] S. Keawsawasvong, C. Thongchom, S. Likitlersuang, Bearing capacity of strip footing on Hoek-brown rock mass subjected to eccentric and inclined loading, Transportation Infrastructure Geotechnology 8/1 (2021) 189-202. DOI: https://doi.org/10.1007/s40515-020-00133-8
  • [45] S. Keawsawasvong, V.Q. Lai, End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor, International Journal of Geosynthetics and Ground Engineering 7 (2021) 15. DOI: https://doi.org/10.1007/s40891-021-00261-2
  • [46] B. Ukritchon, S. Keawsawasvong, Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogenous and anisotropic clays, International Journal for Numerical and Analytical Methods in Geomechanics 44/5 (2020) 596-632. DOI: https://doi.org/10.1002/nag.3018
  • [47] B. Ukritchon, S. Yoang, S. Keawsawasvong, Bearing capacity of shallow foundations in clay with linear increase in strength and adhesion factor, Marine Georesources and Geotechnology 36/4 (2018) 438-451. DOI: https://doi.org/10.1080/1064119X.2017.1326991
  • [48] B. Ukritchon, S. Keawsawasvong, Unsafe error in conventional shape factor for shallow circular foundations in normally consolidated clays, Journal of Geotechnical and Geoenvironmental Engineering 143/6 (2017) 02817001. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001670
  • [49] B. Ukritchon, J.C. Faustino, S. Keawsawasvong, Numerical investigations of pile load distribution of pile group foundation subjected to vertical load and large moment, Geomechanics and Engineering 10/5 (2016) 577-598 DOI: https://doi.org/10.12989/gae.2016.10.5.577
  • [50] J.E. Bowles, Foundation analysis and design, McGraw-Hill, New York, 1977.
  • [51] E.-S.A.A. El-Kasaby, Estimation of guide values for the modulus of elasticity of soil, Bulletin of Faculty of Engineering, Assiut University 19/1 (1991) 1-7.
  • [52] IS 6403, Code of practice for determination of breaking capacity of shallow foundations, Bureau of Indian Standard, New Delhi, India, 1981.
  • [53] M.D. Bolton, The strength and dilatancy of sands, Geotechnique 36/1 (1986) 65-78. DOI: https://doi.org/10.1680/geot.1986.36.1.65
  • [54] P. Pal, Dynamic poisson’s ratio and modulus of elasticity of pozzolana portland cement concrete, International Journal of Engineering and Technology Innovation 9/2 (2019) 131-144.
  • [55] IS 456, Indian standard code of practice for plain and reinforced concrete (Fourth Revision), Bureau of Indian Standard, New Delhi, India, 2007.
  • [56] IS 800, Indian standard for general construction in steel - Code of Practice (Third Revision), Bureau of Indian Standard, New Delhi, India, 2007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-073c8c4e-231d-4c92-b71c-7cf2b63b7f21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.