PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An investigation of hot spot location at turbine inlet – numerical simulations for factor project test rig

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the presented paper is the investigation of a flow structure and parameters distribution downstream of combustor simulator and its effect on turbine inlet. The investigations are carried out by means of numerical simulations for combustor and turbine nozzle guide vane configuration existing at test rig in DLR Goettingen. As the effect, the hot spot location for different relative positions of the swirler and nozzle guide vanes is shown. The presented results are obtained within a pre-test simulations supporting the final design of the test section and they allow to draw conclusions for the required limiting cases investigated experimentally. The location of the hot spot is highly important for thermal loading of the first stage rotor.
Rocznik
Tom
Strony
101--115
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Barringer M.D., Thole K.A., Polanka M.D.: Developing a combustor simulator for investigating high pressure turbine aerodynamics and heat transfer. Proc. ASME TurboExpo 2004: Power for Land, Sea and Air, June 14-17, 2004, Vienna, GT2004-53613.
  • [2] Barringer M.D., Thole K.A., Polanka M.D.: Experimental evaluation of an inlet profile generator for high pressure turbine tests. Proc. ASME TurboExpo 2006: Power for Land, Sea and Air, Barcelona, May 8–11, 2006, GT2006-90401.
  • [3] Durney D.J., Gundy-Burlet K.L., Sondak D.L.: Survey of hot streak experiments and simulations. Int. J. Turbo Jet Engines 16(1999),1, 1–15.
  • [4] Jenkins S., Varadarajan K., Bogard D.G.: The effects of high mainstream turbulence and turbine vane film cooling on the dispersion of a simulated hot streak. ASME J. Turbomachinery, 126(2004),1, 203–211.
  • [5] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(1994),8, 1598–1605.
  • [6] Polanka M.D., Anthony R.J., Bogard D.G., Reeder M.: Determination of cooling parameters for a high speed, true scale, metallic turbine vane ring. In: Proc. ASME TurboExpo 2008: Power for Land, Sea and Air, Berlin, June 9–13, 2008, GT2008-50281.
  • [7] Shyy W., Braaten M.E., Burrus D.L.: Study of three-dimensional gas-turbine combustor flows. Int. J. Heat Mass Trans. 32(1989), 6, 1155–1164.
  • [8] Stabe R.G., Whitney W.J., and Moffitt T.P.: Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile. Techn. Rep., NASATM 83655, 1984. AIAA Paper 84-1161.
  • [9] Shang T., Guenette G.R., Epstein A.H., Saxer P.: The influence of inlet tmperature distortions on rotor heat transfer in a transonic turbine. In: Proc. 31st Joint Propulsion Conf. and Exhibit, San Diego, 1995, AIAA 95-3042.
  • [10] Jameson A., Schmidt W., Turkel: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. Palo Alto 1981, AIAA Paper 81-1259.
  • [11] Numeca IGG/Turbo v10 2016 User Manual Documentation.
  • [12] Numeca FINE/Turbo v10 2016 Theoretical Manual Documentation.
  • [13] Ansys FLUENT v16 2015 Theoretical Manual Documentation.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07302dda-d6bc-4f38-aede-8129f7949a4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.