
123

IMPLEMENTATION OF THE WAVELET TRANSFORM

WITH SSE EXTENSIONS

Tadeusz Łyszkowski1, Tomasz Wiechno2, Mykhaylo Yatsymirskyy2

1Higher Vocational State School in Wloclawek
tadeusz.lyszkowski@pwsz.wloclawek.pl

2Institute of Information Technology, Lodz University of Technology
tomasz.wiechn@p.lodz.pl, mykhaylo.yatsymirskyy@p.lodz.pl

Abstract

It has been shown that application of assembly implementation of Streaming
SIMD Extensions (SSE) shortens the time needed to apply filtration in two-
channel filter bank by tenfold, comparing to non-optimized version, written in
Microsoft Visual C++ 2010 Express, without assembler extensions.

The implementation described in this paper can be applied to computation of
Discrete Wavelet Transform on general-purpose processors..

Key words: Orthogonal Filters, Discrete Wavelet Transform, SSE extensions

1 Introduction

Discrete Wavelet Transform (DWT) is applied to data compression, sys-
tem identification, signal approximation and interpolation, image processing
and recognition as well as synthesis of digital watermarking [1-4].

z(n)

synthesisanalysis

x(n)

n=0,1,�,N-1

y1(n)

y2(n)

n=0,1,�,N/2-1

H

G

Q

R

n=0,1,�,N-1

2

2

2

2

Figure 1. Diagram of one stage of analysis and synthesis of Discrete Wavelet Trans-
form.

Implementation Of The Wavelet ...

124

Because of such wide and profound applications, there is a lot of research
on the improvements of Fast Computational Algorithms for the Discrete
Wavelet Transform [5-10]. The construction of the algorithm is based on pa-
rallel or pyramidal repetition of basic analysis stage for forward transform and
a basic synthesis stage for inverse transform. The two channel biorthogonal
filter banks shown on Figure 1. [11] are a classic model of such a transform.

Blocks H, G, Q and R, are linear filters with finite impulse response H =
h0,h1,...,hK-1, G = g0,g1,...,gK-1, Q = q0,q1,...,qK-1 i R = r0,r1,...,rK-1, where the
length of the filter K is an even natural number. Blocks ↓2 and ↑2 denote,
respectively, the operations of decimation in time of input sequence (down-
sampling) and upsampling by a factor of 2, i.e. inserting zeroes between each
sample of a input sequence.The results of analysis stage of (forward) DWT
can be expressed as two convolutions with decimation [12]

y2i = ,
1

0
21,






K

k
kikKK xh

y2i+1 = 





1

0
21,

K

k
kikKK xg i = 0,1,...,N/2-1,

(1)

where hK,k ,gK,k for k = 0,1,...,K-1 are impulse responses of filters HK, GK,
and N is the length of input sequence.

If coefficients of impulse responses of filters HK and GK are written in re-
versed order:

h1K,k = hK,K-1-k, g1K,k = gK,K-1-k k = 0,1,...,K-1

formulas (1) can be rewritten in the form (2) that is more convenient for
implementation

y2i = 





1

0
2, ,1

K

k
kikK xh

y2i+1 = 





1

0
2,1

K

k
kikK xg for i = 0,1,...,N/2-1.

(2)

From (2) it is clear that the time needed for computation of DWT ex-
pressed as a convolution, depends on the effectiveness of floating point mul-
tiplications and additions. Exploiting Data Level Parallelism this can be en-
hanced by the usage of Streaming SIMD Extensions (SSE) available on con-
temporary general-purpose processors.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

125

The paper describes construction of assembler implementations of DWT
algorithms (2) that make use of SSE. The algorithms are given for a number
of filter lengths K = 6,8,10 and 12 and the results are compared with the refer-
ence algorithms written in pure C++.

The problem solved in the paper is important as the majority of personal
computers in use, is equipped with processors that are compliant with SSE
rather than newer AVX extensions, introduced in 2011 [13].

2 SSE in IA-32 architecture

Beginning from the Pentium III processor the Streaming SIMD Extensions
(SSE) were introduced to the IA-32 architecture. The SSE expands the SIMD
execution model introduced with the Intel (Multimedia Extension) MMX
technology by providing a new set of eight 128-bit registers xmm0,
xmm1 ... xmm7 and the ability to perform (single-instruction, multiple-data)
SIMD operations on four 32-bit packed single-precision floating-point values
[13].The same operation can be performed at the same instruction cycle on
four float elements stored in xmm register or in four array elements kept in
memory.

Because of this parallelism in data processing, application of SSE Exten-
sions can yield even fourfold performance gain comparing to a code that is
non SSE aware. It is worth noting that data level parallelism reduces up to
four times the number of instructions needed to write the algorithm.

3 Implementation of one stage of forward DWT computed as a
convolution

Figure 2 shows the reference C++ implementation of DWT written accord-
ing to the formula (2).

// DWT in C++
for (int i=0;i<N;i+=2)

 {
float t1=h1[0]*x[i], t2=g1[0]*x[i];
for (int k=1;k<K;k++)

 {
t1+=h1[k]*x[i+k]; t2+=g1[k]*x[i+k];

 }
y[i]=t1; y[i+1]=t2;

 }

Figure 2. Algorithm of the one stage of forward DWT computed as a con-
volution in C++.

Implementation Of The Wavelet ...

126

The algorithm needs K floating-point multiplications and K-1 floating-
point additions to compute one output element. However because of the data
level parallelism it is possible to significantly shorten the time of this compu-
tation by the application of SSE extensions.To maximize performance gain,
the whole algorithm has been programmed in assembly lan-
guage.Furthermore, the inner loop that computes the sum of the product of
input values times coefficients of impulse response (in reversed order), has
been unfolded and optimized for the selected filter lengths, to shorten the
most computation intensive part. The outer loop that contains mainly instruc-
tions for reading samples and writing output coefficients has been left intact.

Hence, further discussion in this section will concern major parts of the
two assembler implementations of forward DWT for N being divisible by 4,
namely: version A, for filers of length K=6 and 8, version B, for K=10 and 12
as well as some elements of version C, for N being even and K=6.

3.1 Version A. Implementation of DWT using assembler with SSE
extensions

The implementation of this version, for filter length K=8 is shown on Fig-
ure 3. For the sake of clarity and speed of computation it has been assumed
that the number of input samples N is divisible by 4. It is not really a con-
straint as, in majority of DWT applications, the length of input sequence is
power of 2 with the exponent greater than 1. However, this makes it possible
to compute and keep four output coefficients in xmm register as well as store
them into the memory on every iteration of the loop.

In the discussed implementation there are eight steps. The first step shown
on part a) of Figure 3. loads four input samples x3, x2, x1, x0 into the register
xmm0 and next four samples x7, x6, x5, x4 into the register xmm1. It is illu-
strated by the comments to the code, where four parts of the relevant register
are shown for every instruction. In part b) registers xmm4, xmm5, xmm6 i
xmm7 are loaded with coefficients of impulse responses h1 and g1 in reversed
order.

mov ecx,0 ;(i=0)ecx=0
movaps xmm0,x[ecx] ; xmm0=x3|x2|x1|x0
movaps xmm1,x[ecx+16] ; xmm1=x7|x6|x5|x4
movaps buf1,xmm1 ; buf1=x7|x6|x5|x4

 Loading input data to the xmm registers

movaps xmm4,h1 ; xmm4=h13|h12|h11|h10
movaps xmm5,h1[16] ; xmm5=h17|h16|h15|h14
movaps xmm6,g1 ; xmm6=g13|g12|g11|g10

Łyszkowski T., Wiechno T., Yatsymirskyy M.

127

movaps xmm7,g1[16] ; xmm7=g17|g16|g15|g14

 Loading parameters h1 and g1 to the xmm registers

iloop:
movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0
mulps xmm2,xmm4 ; xmm2=xi+3*h13|xi+2*h12|

; xi+1*h11|xi+0*h10
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4
mulps xmm3,xmm5 ; xmm3=xi+7*h17|xi+6*h16|

; xi+5*h15|xi+4*h14
addps xmm2,xmm3 ; xmm2=xi+7*h17+xi+3*h13|

; xi+6*h16+xi+2*h12|
;xi+5*h15+xi+1*h11|xi+4*h14+xi+0*h10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

;xi+7*h17+xi+3*h13+xi+6*h16+xi+2*h12|
; xi+5*h15+xi+1*h11+xi+4*h14+xi+0*h10

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0|
; xi+7*h17+xi+6*h16+xi+5*h15+xi+4*h14+
; xi+3*h13+xi+2*h12+xi+1*h11+xi+0*h10

movaps buf5,xmm2 ; buf5=0.0|0.0|0.0|t1

 Computation of coefficient t1 of DWT (at that moment it is yi+0)

movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0
mulps xmm2,xmm6 ; xmm2=xi+3*g13|xi+2*g12|

; xi+1*g11|xi+0*g10
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4
mulps xmm3,xmm7 ; xmm3=xi+7*g17|xi+6*g16|

; xi+5*g15|xi+4*g14
addps xmm2,xmm3 ; xmm2=xi+7*g17+xi+3*g13|

; xi+6*g16+xi+2*g12|
; xi+5*g15+xi+1*g11|
; xi+4*g14+xi+0*g10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+7*g17+xi+3*g13+
; xi+6*g16+xi+2*g12|
; xi+5*g15+xi+1*g11+
; xi+4*g14+xi+0*g10

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0|
; xi+7*g17+xi+6*g16+

Implementation Of The Wavelet ...

128

; xi+5*g15+xi+4*g14+xi+3*g13+
; xi+2*g12+xi+1*g11+xi+0*g10

shufps xmm2,xmm2,11110011b ; xmm2=0.0|0.0|t2|0.0
addps xmm2,buf5 ; xmm2=0.0|0.0|t2|t1
movaps buf5,xmm2 ; buf5=0.0|0.0|yi+1|yi+0

 Computation of coefficient t2 of DWT (at that moment it is yi+1)

movaps xmm2,x[ecx+32] ; xmm2=xi+11|xi+10|xi+9|xi+8
movaps buf0,xmm2 ; buf0=xi+11|xi+10|xi+9|xi+8
shufps xmm0,xmm1,01001110b ; xmm0=xi+5|xi+4|xi+3|xi+2
shufps xmm1,xmm2,01001110b ; xmm1=xi+9|xi+8|xi+7|xi+6

 Loading new input data to the xmm registers

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2
mulps xmm2,xmm4 ; xmm2=xi+5*h13|xi+4*h12|

; xi+3*h11|xi+2*h10
movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6
mulps xmm3,xmm5 ; xmm3=xi+9*h17|xi+8*h16|

; xi+7*h15|xi+6*h14
addps xmm2,xmm3 ; xmm2=xi+9*h17+xi+5*h13|

; xi+8*h16+xi+4*h12|
; xi+7*h15+xi+3*h11|
; xi+6*h14+xi+2*h10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+9*h17+xi+5*h13+
; xi+8*h16+xi+4*h12|
; xi+7*h15+xi+3*h11+
; xi+6*h14+xi+2*h10

haddps xmm3,xmm2 ; xmm3=0.0|
; xi+9*h17+xi+8*h16+
; xi+7*h15+xi+6*h14+
; xi+5*h13+xi+4*h12+
; xi+3*h11+xi+2*h10|
; 0.0|0.0

movaps buf6,xmm3 ; buf6=0.0|t1|0.0|0.0

 Computation of coefficient t1 of DWT (at that moment it is yi+2)

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2

Łyszkowski T., Wiechno T., Yatsymirskyy M.

129

mulps xmm2,xmm6 ; xmm2=xi+5*g13|xi+4*g12|xi+3*g11|
; xi+2*g10

movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6
mulps xmm3,xmm7 ; xmm3=xi+9*g17|xi+8*g16|xi+7*g15|

; xi+6*g14
addps xmm2,xmm3 ; xmm2=xi+9*g17+xi+5*g13|

; xi+8*g16+xi+4*g12|
; xi+7*g15+xi+3*g11|
; xi+6*g14+xi+2*g10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+9*g17+xi+5*g13+
; xi+8*g16+xi+4*g12|
; xi+7*g15+xi+3*g11+
; xi+6*g14+xi+2*g10

haddps xmm3,xmm2 ; xmm3=0.0|xi+9*g17+xi+8*g16+
; xi+7*g15+xi+6*g14+
; xi+5*g13+xi+4*g12+
; xi+3*g11+xi+2*g10|0.0|0.0

shufps xmm3,xmm3,10000000b ; xmm3=t2|0.0|0.0|0.0
addps xmm3,buf6 ; xmm3=t2|t1|0.0|0.0
addps xmm3,buf5 ; xmm3=yi+3|yi+2|yi+1|yi+0
movapsy[ecx],xmm3 ; y[ecx]=yi+3|yi+2|yi+1|yi+0

 Computation of coefficient t2 of DWT (at that moment it is yi+3),
assembling yi+3, yi+2, yi+1, yi+0, in xmm register and storing its content
into the memory

add ecx,16 ;(i=i+4) i.e. ecx=ecx+16
movaps xmm0,buf1 ; xmm0=xi+7|xi+6|xi+5|xi+4
movaps xmm1,buf0 ; xmm1=xi+11|xi+10|xi+9|xi+8
movaps buf1,xmm1 ; buf1=xi+11|xi+10|xi+9|xi+8
cmpecx,NN ; Test the end of loop

; condition(ecx = NN),
;where NN=(N/4)*16

jneiloop ; Jump to the label iloop
; mentioned in step c)
; if ecx ≠ NN

 updating xmm0 i xmm1 before the next iteration of the loop and exit from
the loop.

Implementation Of The Wavelet ...

130

Figure 3. Steps of computation of the coefficients yi+3, yi+2, yi+1, yi+0 for i =
0,4,8,...,N-4 in Version A of the implementation of DWT using assembler
with SSE extensions

After the initialization steps a) - b) the algorithm enters the loop shown in
steps c) - h). The step c) shows how the output coefficient yi+0 is being com-
puted and put into the least significant part of the xmm register. Two SSE
multiplications and three SSE additions are performed in this phase that is
equivalent to eight floating point multiplications and seven additions. The
results are saved to appropriate parts of the xmm register.

The next phase of the loop, namely step d) is devoted to computation of
output coefficient yi+1 and saving it in the subsequent, more significant part of
the xmm register. After this step, the register contains coefficients yi+1, yi+0in
its lower part and floating zeros in the upper part.

This step is almost identical to the preceding one, with the exception of re-
placing impulse response h1with g1.

In step e) registers xmm0 and xmm1 are loaded with input samples shifted
by two positions, in relation to their previous content. Namely,xmm0 contains
samples x5, x4 ,x3 ,x2, and xmm1samples x9, x8, x7, x6. These data will be used to
compute yi+3, yi+2.

Step f) show the details of computation of coefficient yi+2 and points out
that its value is stored in the xmm register, next to already computed yi+1, yi+0.
Again, this phase is very similar to step c), the only difference is the position
in xmm register where the value of yi+2 is being saved.

Similarly, the step g) concerns computation of the forth coefficient yi+3. It
is stored in the most significant part of the register xmm. The final quadruplet
yi+3, yi+2, yi+1, yi+0 is saved from the xmm register into the memory.

The last phase of loop shown as step h) increments loop counter in ecx reg-
ister by 16 (i.e. the size of xmm register in bytes) This value will be used to
address input samples x and output coefficients y.

In the following lines of code, registers xmm0 and xmm1 are being pre-
pared for computation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next
iteration of the loop (with i incremented by 4).

The loop concludes with a test condition ecx ≠ NN, where NN=(N/4)*16.
If this condition is met the code jumps to the label iloop discussed in

step c), i.e. the beginning of the loop.
The code for case K=8 can be also used for K=6, provided the two most

significant coefficients of reversed order impulse responses are set to zero, i.e.
h17=h16=g17=g16=0. However, coefficients h15� h10 and g15� g10 need to
be initialized with corrected values, appropriate for K=6.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

131

3.2 Version B. Implementation of DWT using assembler with SSE
extensions

The implementation for filter length K=12 is similar to Version A. Again it
has been assumed that the number of input samples N is divisible by 4, which
makes it possible to process, in one iteration of the loop, four output coeffi-
cient in the register xmm.

The implementation can be logically divided into 8 steps. At first, the reg-
isters xmm0 are loaded with values x3, x2, x1, x0, xmm1 with x7, x6, x5, x4 and
xmm2 with x11, x10, x9, x8. The reversed coefficients of impulse responses h17,
h16, h15, h14and h13, h12, h11, h10 are sent to xmm5 and xmm4, while g17, g16,
g15, g14and g13, g12, g11, g10 are sent to xmm7 and xmm6. However, because
of the limited number of xmm registers the most significant parts of h111, h110,
h19, h18 and g111, g110, g19, g18 will be fetched from memory.

Following the above initialization code there are six steps in the loop, as
they were in version A.The first step shows how the output coefficient yi+0 is
being computed and put into the least significant part of the xmm register.
Three SSE multiplications and four SSE additions are performed in this phase
which is equivalent to twelve floating point multiplications and eleven addi-
tions. The results are saved to appropriate parts of the xmm register.

The next phase of the loop is devoted to computation of output coefficient
yi+1 and saving it into the subsequent, more significant part of the xmm regis-
ter. After this step, the register contains coefficients yi+1, yi+0in its lower part
and floating zeros in the upper part. Thatphase of the algorithm is almost iden-
tical to the preceding one, with the exception of replacing impulse response
h1with g1.

In the next step registers xmm0, xmm1 and xmm2 are loaded with input
samples shifted by two positions, in relation to their previous content. Name-
ly,xmm0 contains samples x5, x4 ,x3 ,x2,, xmm1samples x9, x8, x7, x6, andxmm2
samples x13, x12, x11, x10. These data will be used to compute yi+3, yi+2.

In the subsequent step, coefficient yi+2 is being computed and stored in the
xmm register, next to the already computed yi+1, yi+0. Again, this phase is very
similar to the computation of yi+0, the only difference is the position in xmm
register where the value of yi+2 is being saved.

Similarly, the following step, concerns computation of the last coefficient
yi+3. It is stored in the most significant part of the register xmm. The final qua-
druplet yi+3, yi+2, yi+1, yi+0 is transferred from the xmm register into the memo-
ry.

The last phase of loop increments loop counter in ecx register by 16 (i.e.
the size of xmm register in bytes). This value will be used to address input
samples x and output coefficients y.

In the following lines of code, registers xmm are being prepared for com-
putation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next iteration of the

Implementation Of The Wavelet ...

132

loop (with i incremented by 4). The loop concludes with a test condition ecx ≠
NN, where NN=(N/4)*16.If this condition is met the code jumps to the label
iloop, i.e. computation of yi+0.

The code that computes DWT for K=12 can be also used for K=10, pro-
vided the most significant coefficients of reversed impulse responses are set to
zero, i.e. h111,=h110,=g111,=g110=0. However, coefficients h19� h10 and
g19� g10 need to be initialized with corrected values, appropriate for K=10.

3.3 Version C. Implementation of DWT using assembler with SSE
extensions

This version of DWT implementation assumes that K=6, but the number of
input samples Nis even. In that case, on every odd iteration of the loop, the
computations are performed in the same way as in version A (see Figure 3.
Step c), and the pair of output coefficients yi+1, yi+0 is saved on the least signif-
icant positions od 128-bit long buffer buf. On every even iteration, a following
pair of output coefficients is being computed and saved in memory, together
with a preceding pair, as a quadruplet of properly ordered coefficients.

If N is not divisible by 4, the last save operation concerns only the last pair
of yi+1, yi+0.The code for computation of output coefficients is identical in
versions A and C of the algorithm, so is the time of computation for K=6.

4 Test environment

All DWT implementations presented in the paper were written as C++ in-
line assembly (with SSE extensions) and compiled with Microsoft Visual C++
2010 Express Version 10.0.40219.1 SP1Rel. The compiled code was executed
on MS Windows 7 Home Premium PC with Intel® Core� i5 CPU 650
3.20GHz and 4GB of RAM on board. Further, to neglect impact of concurrent
operations of the processor on the computation time, all tests were run pN
times, and the minimum time of execution, obtained with 64-bit clock cycle
counter (measuring the number of clock cycles of the very code responsible
for the computation of DWT), has been taken as a actual result of the mea-
surement.

5 Experimental results

In order to compare effectiveness of the proposed implementation of DWT
using assembler with SSE extensions, it was compared against the reference
program written in pure C++, for the selected lengths of filter K, and a few

Łyszkowski T., Wiechno T., Yatsymirskyy M.

133

lengths of a input sequence N being divisible by 4. The resulting measure-
ments expressed in cycles are gathered in Table 1.

Table 1. Results of measurement for pN = 100 000 000

K Implementation N=64 N=256 N=1024 N=4096

6
C++ 3 465 13 983 55 902 223 611
Assembler with SSE
(version A)

459 1 845 7 395 29 490

8
C++ 4 479 18 246 72 927 291 693
Assembler with SSE
(version A)

459 1 845 7 389 29 862

10
C++ 5 577 22 374 89 193 357 006
Assembler with SSE
(version B)

594 2 403 9 621 38 880

12
C++ 6 579 26 628 106 965 425 748
Assembler with SSE
(version B)

597 2 424 9 657 38 616

As can be seen from the table above, for filters of length K=8 and all tested
values of N, implementation of DWT in assembler, with SSE extensions is
performed almost 10 times faster than pure C++ version. For K=12 the opti-
mized code is almost 11 times faster. This speedup may be attributed to ma-
nually optimized assembler implementation with parallel processing of data
using SSE extensions. As it was mentioned in the information about SSE in
IA-32 architecture, this may shorten the time of computation up to four times.

Further reduction of execution time, results from unfolding the inner loop
which is the most computationally intensive. The outer loop contains mainly
instructions for reading samples x and writing output coefficients y.

Because the implementation for K=6 and 8 uses the same version (A) of
the algorithm, execution time is almost identical in both cases. The same
holds true for version B and K=10 and 12.

Regardless of the version of implementation and the value of K, the
amount of time needed to compute DWT is proportional to the length of the
input sequence (and number of iterations). It is a direct conclusion from the
formula (2).

Eventually the version C, for even N, has been examined. The results are
shown in Table 2.

Implementation Of The Wavelet ...

134

Table 2. Results of measurement for pN = 100 000 000

Implementation N=64 N=256 N=1024 N=4096
Assembler with SSE (version C) 465 1839 7389 29436

The execution times for version C are virtually identical to version A. As a
matter of fact, it is an expected result as both implementations share the same
code to compute output pairs of coefficients. Moreover, although the con-
struction and analysis of version C is more complex than version A, the speed
of version C remains the same. Therefore, it is sufficient to use version A for
K=6 and 8, and version B for K=10 and 12 and exclude special implementa-
tions for N, that are even but not divisible by four.

6 Conclusions

The paper discusses a number of implementations of Discrete Wavelet
Transform written as a formula (2). The experimental results show that ma-
nually optimized C++, with unfolded inner loop and inline assembly code
with SSE extensions, is about 10 times more robust than reference program
written in pure C++. What is more, the obtained speedup looks favorably,
comparing to the results shown in [14] where the SSE enabled code was per-
formed 6x faster than naïve, C++ implementation of the convolution algo-
rithm.

Although it is possible to achieve even further speedup with the applica-
tion of the thread level parallelism of contemporary multi-core processors, the
necessary algorithms are considerably more complicated. Hence, the proposed
solution that use only Data Level Parallelism with SSE extensions is an attrac-
tive alternative, available even on a simple one core processors.

Due to the lower complexity of versions A and B, they are recommended
as effective templates for computation of DWT with application of SSE.

References

1. Zieliński T. P.,2009,Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań,
WKŁ, Warszawa

2. Fleet P. J.: 2008, Discrete wavelet transformations: An elementary Approach
with applications, John Wiley&Sons, New Jersey.

3. Strang G., Nguyen T., 1999,Wavelets and filter banks, Wellesley-Cambridge
Press.

4. Lipiński P.,2011,Watermarking software in practical applications, Bulletin of
Polish Academy of Sciences: Technical Sciences, Vol. 59, nr 1, pp. 21-25.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

135

5. Cooklev T., 2006,An efficient architecture for orthogonal wavelet transforms,
IEEE Signal processing letters, Vol. 13, nr 2, pp. 77-79.

6. Olkkonen J. T., Olkkonen H., 2007,Discrete lattice wavelet transform, IEEE
Transactions on circuits and systems � II: Express briefs, Vol. 54, nr 1, pp. 71-
75.

7. Daubechies I., Sweldens W., 1998,Factoring Wavelet Transform into Lifting
Steps, The Journal of Fourier Analysis and Applications, Vol. 4, nr 3, pp. 245-
267.

8. Denk T. C., Parhi K. K., 1997,VLSI architectures for lattice structure based
orthonormal discrete wavelet transforms, IEEE Transactions on circuits and
systems � II: Analog and digital signal processing, Vol. 44, nr 2, pp. 129-132.

9. Bernabe G., Garcia J. M., Gonzalez J., 2003,Reducing 3D Wavelet Transform
Execution Time through the Streaming SIMD Extensions, IEEE Computer
Society, Proceedings of the Eleventh Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pp. 209-223

10. ShahbahramiA., Juurlink B., Vassiliadis S., 2008,Implementing the 2-D Wavelet
Transform on SIMD-Enhanced General-Purpose processors, IEEE Transactions
on multimedia, Vol. 10, nr 1, pp. 43-51.

11. Yatsymirskyy M., 2011,Nowy model macierzowy dwukanałowego banku
biortogonalnych filtrów, Metody Informatyki Stosowanej, nr 1/2011 (26),
Polska Akademia Nauk Oddział w Gdańsku, Komisja Informatyki, pp. 205-212.

12. Yatsymirskyy M.,Stokfiszewski K., 2012, Effectiveness of Lattice Factorization
of Two-Channel Orthogonal Filter Banks, New Trends in Audio and Video/
Signal Processing Algorithms, Architectures, Arrangements and Applications,
27-29 September, Łódź, pp. 275-279.

13. Intel® 64 and IA-32 Architectures. Software Developer's Manual, Volume 1:
Basic Architecture.

14. Gomersall H., 2012, Speedy fast 1D convolution with SSE,
http://hgomersall.wordpress.com/2012/11/02/speedy-fast-1d-convolution-with-
sse/

