PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Tree Property at ω2 and Bounded Forcing Axioms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that the Tree Property at ω2 together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω1) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω2 together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω1) then it is equiconsistent with the existence of just a Mahlo cardinal.
Rocznik
Strony
207--216
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Kurt Gödel Research Center, Universität Wien, Währinger Straße 25, A-1090 Wien, Austria
  • Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Haupstraße 8/104, 1040 Wien, Austria
Bibliografia
  • [1] J. Bagaria, Bounded forcing axioms as principles of generic absoluteness, Arch. Math. Logic 39 (2000), 393–401.
  • [2] J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 913–959.
  • [3] J. E. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271–288.
  • [4] J. Cummings, M. Foreman, and M. Magidor, Scales, squares and reflection, J. Math. Logic 1 (2001), 35–98.
  • [5] P. Erdős and A. Tarski, On some problems involving inaccessible cardinals, in: Essays on the Foundations of Mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, 50–82.
  • [6] M. Goldstern and S. Shelah, The bounded proper forcing axiom, J. Symbolic Logic 60 (1995), 58–73.
  • [7] W. P. Hanf and D. Scott, Classifying inaccessible cardinals, Notices Amer. Math. Soc. 8 (1961), 445 (abstract).
  • [8] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003.
  • [9] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; Erratum, ibid. 4 (1972), 443.
  • [10] K. Kunen, Set Theory, Stud. Logic (London) 34, College Publ., London, 2011.
  • [11] D. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935), 1–38.
  • [12] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46.
  • [13] J. Moore, Proper forcing, cardinal arithmetic, and uncountable linear orders, Bull. Symbolic Logic 11 (2005), 51–60.
  • [14] H. Sakai and B. Veličkovic, Stationary reflection principles and two cardinal tree properties, J. Inst. Math. Jussieu 14 (2015), 69–85.
  • [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
  • [16] W. Z. Sun, Stationary cardinals, Arch. Math. Logic 32 (1993), 429–442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-072db504-d2a9-48d0-8056-5f76d029222a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.