Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that the Tree Property at ω2 together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω1) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω2 together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω1) then it is equiconsistent with the existence of just a Mahlo cardinal.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
207--216
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Kurt Gödel Research Center, Universität Wien, Währinger Straße 25, A-1090 Wien, Austria
autor
- Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Haupstraße 8/104, 1040 Wien, Austria
Bibliografia
- [1] J. Bagaria, Bounded forcing axioms as principles of generic absoluteness, Arch. Math. Logic 39 (2000), 393–401.
- [2] J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 913–959.
- [3] J. E. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271–288.
- [4] J. Cummings, M. Foreman, and M. Magidor, Scales, squares and reflection, J. Math. Logic 1 (2001), 35–98.
- [5] P. Erdős and A. Tarski, On some problems involving inaccessible cardinals, in: Essays on the Foundations of Mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, 50–82.
- [6] M. Goldstern and S. Shelah, The bounded proper forcing axiom, J. Symbolic Logic 60 (1995), 58–73.
- [7] W. P. Hanf and D. Scott, Classifying inaccessible cardinals, Notices Amer. Math. Soc. 8 (1961), 445 (abstract).
- [8] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003.
- [9] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; Erratum, ibid. 4 (1972), 443.
- [10] K. Kunen, Set Theory, Stud. Logic (London) 34, College Publ., London, 2011.
- [11] D. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935), 1–38.
- [12] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46.
- [13] J. Moore, Proper forcing, cardinal arithmetic, and uncountable linear orders, Bull. Symbolic Logic 11 (2005), 51–60.
- [14] H. Sakai and B. Veličkovic, Stationary reflection principles and two cardinal tree properties, J. Inst. Math. Jussieu 14 (2015), 69–85.
- [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [16] W. Z. Sun, Stationary cardinals, Arch. Math. Logic 32 (1993), 429–442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-072db504-d2a9-48d0-8056-5f76d029222a