Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of research work on linear friction stir welding (FSW) of magnesium AZ31 and aluminum 2024 alloys. During the FSW process, forces exerted by a tool on joined materials were measured. The measurements of forces were taken in three directions, vertical (Z axis) and horizontal (X and Y axes) directions, using high-sensitive piezoelectric dynamometer. The force analysis was done for three stages of welding process: plunging, dwelling, and welding. Conclusions regarding the force reaction of materials to be welded were formulated. It was found that the first two stages of the process, plunging and dwelling, are very important for the correct welding. In the plunging stage, a tool exerts the greatest forces and unit pressures (at the Z direction) on joined materials; during the dwelling stage, thermal conditions of the process are established. The welding stage was divided into two substages: the initial unstable and the subsequent long-term stabilized one.
Wydawca
Rocznik
Tom
Strony
51--56
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
- The Faculty of Mechanical Engineering and Aeronautics Rzeszow University of Technology, Powstańców Warszawy 8 Str., 35-959 Rzeszow, Poland
autor
- The Faculty of Mechanical Engineering and Aeronautics Rzeszow University of Technology, Powstańców Warszawy 8 Str., 35-959 Rzeszow, Poland
Bibliografia
- [1] R.S. MISHRA, Z.Y. MA: Friction stir welding and processing. Mater. Sci. Eng., 50(2005), 1-78.
- [2] P. HEURTIER, et al.: Mechanical and thermal modelling of friction stir welding. J. Mater. Process. Tech., 171(2006), 348-357.
- [3] O. LORRAIN, et al.: Understanding the material flow path of friction stir welding process using unthreaded tools. J. Mater. Process. Tech. 210(2010), 603-609.
- [4] D.H. CHOI, S.K. KIM, S.B. JUNG: The microstructures and mechanical properties of friction stir welded AZ31 with CaO Mg alloys. J. Alloy. Compd., 554(2013), 162-168.
- [5] G.G. ROY, R. NANDAN, T. DEBROY: Dimensionless correlation to estimate peak temperature during friction stir welding. Sci. Technol. Weld. Joining., 11(2006)5, 606-608.
- [6] S. MALARVIZHI, V. BALASUBRAMANIAN: Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum–AZ31B magnesium alloys. Mater. Des., 40(2012), 453-460.
- [7] T. BALAWENDER, Ł. MICAŁ: Influence of friction stir welding tool geometry on tensile strength of the joint. ZN PRz. Mechanika, 88(2016), 299-306.
- [8] P. MYŚLIWIEC, R.E. ŚLIWA, R. OSTROWSKI: Possibility of joining thin sheets of Al, Mg alloys and Ti GRADE 3 in FSW process. Met. Form., XXVIII(2017)4, 263-280.
- [9] Y.N. ZHANG, et al.: Review of tools for friction stir welding and processing. Can. Metall. Q., 51(2012)3, 250-261.
- [10] M. ASSIDI, et al.: Friction model for friction stir welding process simulation: calibrations from welding experiments. Int. J. Mach. Tools Manuf., 50(2010), 143-155.
- [11] J.L. MURRAY: The Al-Mg (aluminum-magnesium) system. Bull. Alloy Phase Diagrams, 3(1982)1, 60-74.
- [12] Extrusion. Second Edition, ASM International, Materials Park, Ohio, USA, 2006. Available online: www.asminternational.org.
- [13] Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International Handbook, Vol. 2, USA, 1992.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0728d7c1-3b03-4bf7-8063-9bc936297f18