PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A new model for predicting the axial compression capacity of reinforced concrete cylinders strengthened with CFRP

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous scholars have identified the shortcomings of imprecise terminology and substantial computational inaccuracies in the current models for predicting the axial compression capacity of CFRPstrengthened reinforced concrete (RC) cylinders. To improve the prediction accuracy of the axial compressive capacity model for CFRP-strengthened RC cylinders, the present axial compressive capacity model for CFRP-strengthened RC cylinders was scrutinized and evaluated. Drawing on Mander’s constraint theory and the concrete triaxial strength model, a novel axial compressive capacity model for CFRP-strengthened RC cylinders was proposed. This study collected 116 experimental data on the axial compression of CFRP-strengthened RC cylinders and analyzed the accuracy of various models using the data. The findings indicate that the model proposed in this study outperforms other models in predicting axial compression capacity and demonstrates high prediction accuracy. Furthermore, an analysis is conducted on the variation law of the model’s predicted value with respect to the design parameters. The proposed model in this study identifies concrete strength, stirrup spacing, and elastic modulus of CFRP as the primary factors that influence the axial compression capacity of CFRP-strengthened RC cylinders.
Rocznik
Strony
389--404
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • College of Architecture and Urban Planning, Guizhou University, Guiyang 550003, China
autor
  • College of Architecture and Urban Planning, Guizhou University, Guiyang 550003, China
  • College of Architecture and Urban Planning, Guizhou University, Guiyang 550003, China
Bibliografia
  • [1] S. Jurczakiewicz and S. Karczmarczyk, “Composite materials in conservation of historical buildings: examples of applications”, Archives of Civil Engineering, vol. 68, no. 1, pp. 73–89, 2022, doi: 10.24425/ace.2022.140157.
  • [2] D.H. Cheng and B.S. Chen, “Review of Research on Concrete Columns Reinforced with CFRP”, Anhui Architecture, vol. 27, no. 1, pp. 53–55, 2020, doi: 10.16330/j.cnki.1007-7359.2020.01.017.
  • [3] M. Demers and K. Neale, “Confinement of reinforced concrete columns with fibre-reinforced composite sheets—An experimental study”, Canadian Journal of Civil Engineering, vol. 26, no. 2, pp. 226–241, 1999, doi: 10.1139/l98-067.
  • [4] M.H. Harajli, “Axial stress–strain relationship for FRP confined circular and rectangular concrete columns”, Cement and Concrete Composites, vol. 28, no. 10, pp. 938–948, 2006, doi: 10.1016/j.cemconcomp.2006.07.005.
  • [5] H. Hu and R. Searcino, “Analytical Model for FRP-and-Steel-Confined Circular Concrete Columns in Compression”, Journal of Composites for Construction, vol. 18, no. 3, 2014, doi: 10.1061/(asce)cc.1943-5614.0000394.
  • [6] J.G. Teng, G. Lin, and T. Yu, “Analysis-oriented stress-strain model for concrete under combined FRP-steel confinement”, Journal of Composites for Construction, vol. 19, no. 5, 2015, doi: 10.1061/(asce)cc.1943-5614.0000549.
  • [7] T. Jiang and J. G. Teng, “Analysis-oriented stress-strain models for FRP-confined concrete”, Engineering Structures, vol. 29, no. 11, pp. 2968–2986, 2007, doi: 10.1016/j.engstruct.2007.01.010.
  • [8] A. Ilki, O. Peker, E. Karamuk, C. Demir, and N. Kumbasar, “FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns”, Journal of Materials in Civil Engineering, vol. 20, no. 2, pp. 169–188, 2008, doi: 10.1061/(asce)0899-1561(2008)20:2(169).
  • [9] R. Eid and P. Paultre, “Analytical model for FRP-confined circular reinforced concrete columns”, Journal of Composites for Construction, vol. 12, no. 5, pp. 541–552, 2008, doi: 10.1061/(asce)1090-0268(2008)12:5(541).
  • [10] M.A. Issa, R.Z. Alrousan, and M.A. Issa, “Experimental and parametric study of circular short columns confined with CFRP composites”, Journal of Composites for Construction, vol. 13, no. 2, pp. 135–147, 2009, doi: 10.1061/(asce)1090-0268(2009)13:2(135).
  • [11] C. Chastre and M.A.G. Silva, “Monotonic axial behavior and modelling of RC circular columns confined with CFRP”, Engineering Structures, vol. 32, no. 8, pp. 2268–2277, 2010, doi: 10.1016/j.engstruct.2010.04.001.
  • [12] J. Y. Lee, C.K. Yi, H.S. Jeong, S.W. Kim, and J.K. Kim, “Compressive response of concrete confined with steel spirals and FRP composites”, Journal of Composite Materials, vol. 44, no. 4, pp. 481–504, 2010, doi: 10.1177/0021998309347568.
  • [13] C. Pellegrino and C. Modena, “Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement”, Journal of Composites for Construction, vol. 14, no. 6, pp. 693–705, 2010, doi: 10.1061/(asce)cc.1943-5614.0000127.
  • [14] Z. Y. Wang, D.Y. Wang, S.T. Smith, and D.G. Lu, “Experimental testing and analytical modeling of CFRPconfined large circular RC columns subjected to cyclic axial compression”, Engineering Structures, vol. 40, pp. 64–74, 2012, doi: 10.1016/j.engstruct.2012.01.004.
  • [15] F. Shirmohammadi, A. Esmaeily, and Z. Kiaeipour, “Stress–strain model for circular concrete columns confined by FRP and conventional lateral steel”, Engineering Structures, vol. 84, pp. 395–405, 2015, doi: 10.1016/j.engstruct.2014.12.005.
  • [16] Y. Wei, X. Zhang, G. Wu, and Y.F. Zhou, “Behaviour of concrete confined by both steel spirals and fiber reinforced polymer under axial load”, Composite Structures, vol. 192, no. 15, pp. 577–591, 2018, doi: 10.1016/j.compstruct.2018.03.041.
  • [17] F. Braga, R. Gigliotti, and M. Laterza, “Analytical stress-strain relationship for concrete confined by steel stirrups and/or FRP jackets”, Journal of Structural Engineering, vol. 132, no. 9, pp. 1402–1416, 2006, doi: 10.1061/(asce)0733-9445(2006)132:9(1402).
  • [18] K.G. Megalooikonomou, G. Monti, and S. Santini, “Constitutive model for fiber-reinforced polymer-and tie-confined concrete”, ACI Structural Journal, vol. 109, no. 4, pp. 569–578, 2012, doi: 10.14359/51683876.
  • [19] J.G. Teng and L. Lam, “Behavior and modeling of fiber reinforced polymer-confined concrete”, Journal of Structural Engineering, vol. 130, no. 11, pp. 1713–1723, 2004, doi: 10.1061/(asce)0733-9445(2004)130:11(1713).
  • [20] S. Pessiki, K.A. Harries, J.T. Kestner, R. Sause, and J.M. Ricles, “Axial behavior of reinforced concrete columns confined with FRP jackets”, Journal of Composites for Construction, vol. 5, no. 4, pp. 237–245, 2001, doi: 10.1061/(asce)1090-0268(2001)5:4(237).
  • [21] R. Eid, N. Roy, and P. Paultre, “Normal- and high-strength concrete circular elements wrapped with FRP composites”, Journal of Composites for Construction, vol. 13, no. 2, pp. 113–124, 2009, doi: 10.1061/(asce)1090-0268(2009)13:2(113).
  • [22] D.Y. Wang, “Experimental and analytical investigation of seismic performance of nonductile RC frames retrofitted with FRP”, D.O. thesis, Harbin Institute of Technology, China, 2012.
  • [23] Y.X. Zhang, “Behavior of large-size FRP-jacketed circular and rectangular reinforced concrete columns”, M.A. thesis, Hong Kong Polytechnic University, China, 2012.
  • [24] R. Benzaid, “Contribution à l’étude des matériaux composite dans le renforcement et la réparation des éléments structuraux linéaires en béton”, M.A. thesis, Mentouri University of Constantine, Algeria, 2010.
  • [25] R. Carrazedo, “Mecanismos de confinamento e suas implicações no reforço de pilares de concreto por encamisamento com compósito de fibras de carbono”, M.A. thesis, University of São Paulo, Brazil, 2002.
  • [26] S. Matthys, H. Toutanji, and L. Taerwe, “Stress–strain behavior of large-scale circular columns confined with FRP composites”, Journal of Structural Engineering, vol. 132, no. 1, pp. 123–133, 2006, doi: 10.1061/(asce)0733-9445(2006)132:1(123).
  • [27] A.O. Rigazzo and A.L. Moreno jr., “Design parameters for reinforced concrete columns strengthening with CFRP”, IBRACON Structural Journal, vol. 2, no. 2, pp. 167–186, 2006.
  • [28] J.B. Mander, M.J. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete”, textitJournal of Structural Engineering, vol. 114, no. 8, pp. 1804–1826, 1988, doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • [29] M.R. Spoelstra and G. Monti, “FRP-Confined Concrete Model”, Journal of Composites for Construction, vol. 3, no. 3, pp. 143–150, 1999, doi: 10.1061/(ASCE)1090-0268(1999)3:3(143).
  • [30] A.D. Luca, F. Nardone, F. Matta, A. Nanni, G.P. Lignola, and A. Prota, “Structural evaluation of full-scale FRP-confined reinforced concrete columns”, Journal of Composites for Construction, vol. 15, no. 1, pp. 112–123, 2011, doi: 10.1061/(asce)cc.1943-5614.0000152.
  • [31] M. Shahawy, A. Mirmiran, and T. Beitelman, “Test and modeling of carbon-wrapped concrete columns”, Composites, Part B:Engineering, vol. 31, no. 6-7, pp. 471–480, 2000, doi: 10.1016/s1359-8368(00)00021-4.
  • [32] Y. Xiao and H. Wu, “Compressive behavior of concrete confined by carbon fiber composite jackets”, Journal of Materials in Civil Engineering, vol. 12, no. 2, pp. 139–146, 2000, doi: 10.1061/(asce)0899-1561(2000)12:2(139).
  • [33] L. Lam and J.G. Teng, “Design-oriented stress-strain model for FRP-confined concrete”, Construction and Building Materials, vol. 17, no. 6-7, pp. 471–489, 2003, doi: 10.1016/s0950-0618(03)00045-x.
  • [34] Z.Z. Qian and C. Qian, “Unified Strength Criterion for Concrete Under Complex Stressed States”, Chinese Civil Engineering Journal, vol. 29, no. 2, pp. 46–55, 1996.
  • [35] Z.W. Yu and F.X. Ding, “Unified Calculation Method of Compressive Properties of Concrete”, Journal of Building Structure, vol. 24, no. 4, pp. 41–46, 2003.
  • [36] F.X. Ding and Z.W. Yu, “Unified calculation method for tensile mechanical properties of concrete”, Journal of Huazhong University of Science and Technology (Urban Science Edition), vol. 21, no. 3, pp. 29–34, 2004.
  • [37] L. Zhou and Y.S. Su, “Axial bearing capacity of concrete filled steel tubular columns based on tie-arch model”, Journal of Basic Science and Engineering, vol. 27, no. 3, pp. 565–575, 2019, doi: 10.16058/j.issn.1005-0930.2019.03.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07222f70-f281-4d7b-b78d-47fa0a247a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.