
Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.16, No. 2, 2014 295

Article citation info:
ZhAng X, KAng J, Bechhoefer e, ZhAo J. A new feature extraction method for gear fault diagnosis and prognosis. eksploatacja i niezawodnosc – 
Maintenance and reliability 2014; 16 (2): 295–300.

Xinghui ZhAng
Jianshe KAng
eric Bechhoefer
Jianmin ZhAo

A New FeAture extrActioN Method 
For GeAr FAult diAGNosis ANd ProGNosis

NowA MetodA diAGNozowANiA i ProGNozowANiA 
uszkodzeń PrzekłAdNi z wykorzystANieM ekstrAkcji cech

Robust features are very critical to track the degradation process of a gear. They are key factors for implementing fault diagnosis 
and prognosis. This has driven the need in research for extracting good features. This paper used a new method, Narrowband 
Interference Cancellation, to suppress the narrow band component and enhance the impulsive component enabling the gear fault 
detection easier. This method can improve the signal to noise ratio of impulse train associated with the gear fault frequency. A 
run-to-failure test is used to demonstrate the method’s effectiveness. Based on the time synchronous signal of high speed shaft, 
Sideband Index is extracted from the signals processed by Narrowband Interference Cancellation. This feature has good degrada-
tion trend than traditional Sideband Index extracted from the time synchronous average signal directly. Comparison of features 
based on different extraction process proves the effectiveness of developed method.
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Cechy odporne (robustfeatures) mają krytyczne znaczenie w trakcie śledzenia procesu degradacji przekładni. Stanowią one klu-
czowy czynnik w procesie diagnozowania i prognozowania uszkodzeń. Fakt ten stwarza w badaniach naukowych potrzebę ekstrak-
cji pożądanych cech. W niniejszej pracy wykorzystano nową metodę, tzw. metodę eliminacji zakłóceń wąskopasmowych (Narrow-
bandInterferenceCancellation), za pomocą której można wytłumić składową wąskopasmową, a wzmocnić składową impulsową, 
co ułatwia wykrywanie uszkodzeń przekładni. Metoda ta pozwala poprawić stosunek sygnału do szumu w szeregu impulsów 
związanym z częstotliwością charakteryzującą uszkodzenie przekładni. Skuteczność przedstawionej metody można wykazać za 
pomocą badań typu „pracuj do awarii” (run-to-failure) . Na podstawie synchronicznego sygnału wału wysokoobrotowego,  z 
sygnałów przetwarzanych za pomocą metody eliminacji zakłóceń wąskopasmowych ekstrahuje się wskaźnik wstęgi bocznej (Side-
band Index). Cecha ta ma lepszy trend degradacji niż tradycyjny wskaźnik wstęgi bocznej ekstrahowany bezpośrednio z sygnału 
uśrednionego synchronicznie w czasie. Porównanie cech wyodrębnionych w różnych procesach ekstrakcji dowodzi skuteczności 
opracowanej metody.

Słowa kluczowe: Eliminacja zakłóceń wąskopasmowych, degradacja, diagnoza uszkodzeń, prognozowanie 
uszkodzeń, wskaźnik wstęgi bocznej.

1. Introduction

Gears are critical elements in complex machinery, such as heli-
copter, wind turbine etc. Gear faults misdetection will increase the 
overall cost of customer or even lead to disaster. Condition based 
maintenance (CBM) [7] and Prognostics and Health Management 
(PHM) [5] are developed for supplement the traditional maintenance 
methods of capital equipment. Most operations and maintenance 
(O&M) organization are using fault diagnosis and prognosis to im-
prove logistics support of high value equipment. As we know, ex-
tracting good features are key steps for effective fault diagnosis and 
prognosis. For vibration signals based gear fault diagnosis, there are 
time domain analysis, frequency domain analysis and time-frequency 
domain analysis. Some statistical features extracted from time domain 
signals can detect abnormal of gear effectively [10]. However, these 
techniques are limited in their ability to provide actionable informa-
tion as to the location of the fault in the gearbox. Frequency domain 

analysis is difficult for gear faults involving soft/broken teeth as the 
FFT is not sensitive to impact events. 

For many industries (wind farms for example), the investment in 
the infrastructure to support on-line analysis has not been made and 
the hardware is unavailable to record vibration signals of every in-
spection. That is, the cost benefic ratio of on-line equipment is not 
great enough to convince O&M organization to invest. The goal of 
this study is to develop robust analysis techniques such that the busi-
ness case for implementing on-line analysis is made. 

As noted, frequency analysis alone has limited effectiveness for 
some types of faults that occur on gears. Therefore, other time fre-
quency analysis techniques are needed to allow development of con-
dition indicators sensitive to impact/soft tooth/broken tooth faults. For 
the normal case, statistics of these condition indicators are calculated. 
Then if condition indicators exceed the predefined thresholds, this de-
notes the system abnormal. Additional frequency spectrum analysis 
can be implemented to the raw vibration signal recorded provide more 
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actionable information: e.g. the fault locations in the gearbox. When 
the operating conditions are un-stationary, time-frequency analysis 
can be used to fix the fault location and severity. 

For the whole degradation process of gear, we expect to detect 
fault as early as possible and extract effective features that have good 
deterioration trend. In real world condition, a fault signature is small 
relative to the vibration signals. The impulsive signals produced by 
incipient faults are immersed in quasi-stationary signal with far great-
er energy (e.g. gear mesh, shaft rates) which are noise in the fault 
detection process. Additionally, because acceleration is the second 
derivative of displacement, the problem is especially difficult on low 
speed shaft encountered on wind turbines (main shaft rate of 0.15 to 
0.25 Hz for large machines). 

In practice, for statistical features extracted from time domain sig-
nals or frequency domain analysis, it is very difficult to detect incipi-
ent fault of gears of low speed shaft. Wang and Wong [11] developed 
an autoregressive (AR) model based filtering technique to enhance 
the gear fault diagnosis. Then, Endo and Randall [6] proposed the 
use of the minimum entropy deconvolution (MED) technique to en-
hance the ability of the existing AR model based filtering technique 
to detect gear faults. AR model can filter the gear meshing waveforms 
out and only retain the impulsive signal produced by faults, allowing 
earlier fault detection. The MED searches for an optimum set of filter 
coefficients that recover the output signal with the maximum value of 
kurtosis. Therefore, it can enhance the gear fault impulses enabling 
the fault detection easily (assuming that there are no other impulsive 
sources, such as a bearing fault). 

A limitation of the AR-MED method is the preference of the MED 
algorithm to deconvolve only a single impulse or a selection of im-
pulses, as opposed to the desired periodic impulses repeating at the 
period of the fault. Inspired by the MED deconvolution technique, 
McDonald et al. [9] proposed an improved novel deconvolution norm, 
Correlated Kurtosis, which takes advantage of the periodicity of the 
faults and requires no AR model stage prior to deconvolution. Zhang 
et al. [12] developed a new condition indicator tracking the gear deg-
radation under un-stationary condition based on the AR filtering. In 
the signals of gear faults, there is a number of narrow band tones and 
broad noise which mask the desired impulsive signal produced by 
gear faults. If one can find an effective method that can remove the 
narrow band tones out, the impulsive signal will be easily detected. 
Recently, Bechhoefer [2] developed a new method called Narrowband 
Interference Cancellation (NIC) to enhance the gear fault detection. 
This method can filter the narrow band signals out. So, the impulsive 
signals are enhanced. 

Based on the work of Bechhoefer, this paper proposes a new 
feature, which can track the gear degradation effectively. Time syn-
chronous (TS) technology is used to compensate the varying rotation 
speed. Then, NIC is implemented to filter the narrow band signal out. 
Finally, sideband index mentioned in [1] is extracted from post-NIC 
signals. The results demonstrate that this condition indicator is more 
robust than others.

2. Narrowband Interference Cancellation

We can categorize gears faults in two basic categories: wear (scuff-
ing, micro-pitting) or breakage (soft tooth/broken tooth/crack tooth, 
etc). The second fault mode is of great interest because it can cause 
catastrophic fault of a gearbox. These types of faults are characterized 
by generated an impulse signals with the relative characteristic fre-
quencies. The vibration signals collected from machines contain gear 
mesh, shaft rotation, bearing vibration and random noise, along with 
the impulsive signal of interest. The quasi-stationary signals produced 
by gear and shaft are narrowband, while the impulse signals generated 
by gear faults are in a wideband. Usually, the gear fault signals are 
very weak compared to the gear mesh tones and shaft rotation. There-

fore, if we can cancel these narrowband signals, the gear faults will be 
detected easily. This phenomenology can be modeled as:

 x(n) = s(n)+y(n)+v(n) (1)

where
  s(n) is the signal of interest,
  y(n) is the signal associated with gear mesh, shafts rotation, 

e.g. interference,
  v(n) is random noise.

The interference signal is usually large compared to the signal of 
interest. It is necessary to remove the interfering signal y(n) from x(n) 
while preserving the signal of interest s(n). Since the measured signal 
x(n) and the interference signal y(n) are correlated, one can estimate 
the interference using an optimal linear estimator:

 ŷ(n) = ( )H
0 n D−c x  (2)

 Rc0 = d (3)

 R = E{x(n-D)xH(n-D)} (4)

 d = E{x(n-D)y*(n)} (5)

where D is an integer delay operator. If D=1, then Eq. (2) is the LS for-
ward linear predictor. If ŷ(n) = y(n), the output of the filter is x(n)- ŷ(n) 
= s(n)+v(n). This means we can completely remove the interference 
and only the desired signal and noise remains. In practice, signal y(n) 
is not available. To overcome this obstacle, we can use a minimum 
means square error D-step forward linear predictor, such that:

 ef(n) = x(n)+aHx(n-D) (6)

 Ra = -rf (7)

where: 

 rf = E{x(n-D)x*(n)} (8)

For this modeling, the components of the observed signal have the 
following properties:

The signal of interest •	 s(n), the interference signal y(n), and the 
noise signal v(n) are mutually uncorrelated.
The noise signal •	 v(n) is white.
The signal of interest •	 s(n) is wideband and has a short correla-
tion length (e.g. its impulsive).
The interference signal •	 y(n) has a long correlation length: its 
autocorrelation length takes significant values over the range 
0≤|l|≤M, for M>D.

In practice, the second and third properties mean that the desired 
signal and the noise are approximately uncorrelated after a certain 
small lag. These are precisely the properties exploited by the canceller 
to separate the narrowband interference from the desired signal and 
the background noise.

According to the first assumption, we have:

 E{x(n-k)y*(n)}=E{y(n-k)y*(n)}=ry(k) (9)

 rx(l) = rs(l) + ry(l) + rv(l) (10)

If the second and third modeling assumptions hold true, we have:

 rx(l) = ry(l) for l ≠	0,	1,	…,	D-1 (11)
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The exclusion of the lags for l ≠	0,	1,	…	,	D-1 in r and d is critical, 
and we have arranged for that by forcing the filter and the predictor to 
form their estimates using the delayed data vector x(n-D). From (5), 
(8), and (11), we conclude that d = rf and therefore c0 = a0. Thus, the 
optimum NBI estimator c0 is equal to the D-step linear predictor a0, 
which can be determined exclusively from the input signal x(n). Then, 
the signal with interference removed is:

 x(n)- ŷ(n) = x(n) - ( )0aH n D−x = ef(n) (12)

which is identical to the D-step forward prediction error. This leads to 
the linear prediction NIC shown in Figure 1. For a full description of 
the analysis, we can see (Manolakis et al. 2000) [9].

3. Experiment

Figure 2 shows the experimental system used in this paper to 
verify the performance of the proposed method. The system includes 
a gearbox, a 4 kW three phase asynchronous motor for driving the 
gearbox, and a magnetic powder brake for loading. The motor rotat-
ing speed is controlled by an electromagnetic speed-adjustable motor, 
which allows the tested gear to operate under various speeds. The load 
is provided by the magnetic powder brake connected to the output 
shaft and the torque can be adjusted by a brake controller. 

The data acquisition system is composed of acceleration trans-
ducers, PXI-1031 mainframe, PXI-4472B data acquisition cards, and 
LabVIEW software. The type of transducers is 3056B4 of Dytran 
Company. There are four transducers which are mounted in different 
places on gearbox. In order to acquire the speed and torque informa-
tion, a speed and torque transducer is installed in the input shaft as il-
lustrated in Figure 2. For this transducer, one revolution of input shaft 
will produce 60 impulses.

As shown in Figure 3, the gearbox has three shafts, which are 
mounted to the gearbox housing by rolling element bearings. Gear 1 
on low speed (LS) shaft has 81 teeth and meshes with gear 3 with 18 

teeth. Gear 2 on Intermediate speed (IS) shaft has 64 teeth and meshes 
with gear 4, which is on the high speed (HS) shaft and has 35 teeth. 

This experiment is a run-to-failure (RTF) test. It operated from 
normal to failure. When the vibration amplitude exceeds the 60 m/
s2, we define the gearbox failure. The whole process took 548 hours 
under	approximate	speed	1200	rpm	and	load	15	N•m.	In	this	test,	the	
sampling frequency was 20 KHz for 12 second. The sampling interval 
between two consecutive inspections is ten minutes. During the test, 
the gearbox was periodically inspected. It was found that the main 
fault mode was wear. Gear 2, 3, and 4 had slight wear. Gear 1 has 
serious wear and some teeth were broken. Then, the whole degrada-
tion process can be depicted as follows. When a normal gear operates 
some time, some pitting fault will appear on the gear face. With the 
time elapse, these pitting faults will extend to the spalling and lead 
to broken tooth finally. The degradation process of gear 1 can be de-
picted as Figure 4.

4. Data analysis and discussion

4.1. Degradation feature extraction

Because the rotating speed during the signal acquisition has small 
fluctuations, TS technology [3] must be used to mitigate the influence 

Fig. 1. Block diagram of linear prediction NBI canceller

Fig. 3. Structure of gearbox and the transducers location

Fig. 4. Fault propagation over time

Fig. 2. Test-rig of gearbox
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of varying speed. This was done by resampling the vibration data rela-
tive to a key-phasor [9]. Then, NIC is used to remove the narrowband 
signals out. Finally, sideband index (SI) is extracted from the NIC sig-
nals. SI is the average of the first order sidebands of the fundamental 
gear meshing frequency. It can be represented as Equation 13:

 SI = (RI,-1(x)+ RI,+1(x))/2 (13)

In this analysis, the HS shaft is the synchronous shaft. In this pa-
per, the parameters D and M of NIC are selected as 1 and 32 for all 
the data processing. For the RTF test described in Section 3, there are 
3,288 inspection points in the gearbox life. From Figure 4, we can see 
that the gear had some incipient pitting fault in the face when it oper-
ated until 100 hours. In order to demonstrate the effectiveness of NIC 
technology, data collected at inspection point 601 (the first inspection 
point after 100 hours) was selected as the processing object. After 
time synchronous and NIC processing, results of time domain and 
frequency domain can be seen in Figure 6 and Figure 8. 

Figure 5 is the time domain signal of inspection point 601 with-
out NIC processing. Compared to the Figure 6, its kurtosis value is 
smaller. This denotes that NIC processing isolated the fault, which 
is impulsive in nature (e.g. higher kurotosis). From the view of fre-
quency analysis, it is seen that the mesh tones of HS-IS (702.5764 
Hz) are dominant in the frequency spectrum without NIC processing, 
as depicted in Figure 7. The main fault is found on gear 1. Mesh fre-
quency of IS-LS (197.5996 Hz) and its harmonics should be dominant 
in the spectrum. Compared to Figure 7, Figure 8 shows that spectral 
energy of HS-IS (narrowband signal) is suppressed after NIC process-
ing. This enabled the fault detection of gear 1 be more easily detected. 
Finally, the robust degradation feature SI can be extracted from the 
RTF data sets as illustrated in Figure 9. 

From the Figure 9, we can see that degradation feature SI of chan-
nel four has the best performance. Its degradation trend is better than 
the features of other three channels. Degradation feature of channel 
1increase after the gearbox operating a short time and it decrease 
gradually at the initial stage of gearbox’s life. This is wear in, could 
possible affect the effectiveness of prognostic algorithms. Similarly, 
degradation features of channel 2 and channel 3 have high values at 
beginning and then enter into a relatively stationary process. These 
kinds of features will lead to ineffectiveness of the prognostic algo-
rithms. In Figure 9, curves with arrow are used to denote the abnormal 
feature fluctuation. 

4.2. Discussion

In reference [9], degradation feature SI was extracted from (1) 
time synchronous average (TSA) signals. We compared the 
SI extracted from TSA signals with the SI extracted from the 
NIC-TS signals. Here, the synchronous shaft is the LS shaft. 
SI extracted from TSA signals of four channels are depicted in 
Figure 10. Similar to Figure 9, degradation feature SI of chan-
nel four is the best. Figure 11 is the comparison of feature SI 
extracted from NIC-TS signals (showed in Figure 9) and TSA 
signals (showed in Figure 10) of channel four. It is showed 

Fig. 5. Time domain signal of inspection point 601 without NIC processing

Fig. 8. Frequency domain information of inspection point 601 after NIC 
processing

Fig. 9. Degradation feature SI extracted from NIC signal of four channels

Fig. 6. Time domain signal of inspection point 601 after NIC processing

Fig. 7. Frequency domain information of inspection point 601 without NIC 
processing
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that SI extracted from NIC-TS signal is smoother than the SI 
extracted from TSA signals. SI extracted from TSA signals has 
large fluctuations at the early stage of gearbox’s life. 

In section 4.1, the NIC was used to process the TS signal in (2) 
which the HS shaft is the synchronous shaft. If the LS shaft is 
the synchronous shaft, the SIs based on the NIC-TSA process-
ing and NIC-TS processing should be investigated. Figure 12 
is the feature SI extracted from the NIC-TSA signals. It shows 
that all features SI of four channels have large fluctuations in 
the whole degradation process.

Figure 13 is the features SI extracted from the NIC-TS signals. 
It is very similar to Figure 12. Therefore, the degradation feature SI 
directly extracted from NIC-TS signal of HS shaft has the best per-
formance.

From Figure 12 and Figure 13, it can be seen that all the features 
of four channels have large fluctuation when the gearbox degraded. 
Using LS shaft as the synchronous shaft, the TSA signal will have a 
very long length for one revolution. Really, there is nothing up there 
but noise which is due to the interpolation. So, this leads to the feature 
fluctuation. 

In this paper, the parameters (3) D and M of NIC are selected by 
experience. The optimization of these two parameters can 
be investigated in future to enhance the NIC ability. Another 
problem is that the rotation speed and load are varying with 
time as depicted in Figure 14 and Figure 15. Even if the vary-
ing range is small, this will have certain influence to the trend 
of degradation feature. In real, taking wind turbine for exam-
ple, its rotation speed and load are varying with wind speed. 
So, robust features which are not sensitive to speed and load 
varying need to be investigated in the future work.

5. Conclusion

This paper uses a new method NIC that can enhance the impulse 
signals produced by gear faults. NIC technology can suppress the 
interference of narrow band signal. Based on the TS signal of HS 
shaft, robust degradation feature can be extracted after NIC process-
ing. Various results comparison from different view demonstrated the 
effectiveness of the proposed method. 

Fig. 12. SI extracted from NIC-TSA signals of four channels

Fig. 13. SI extracted from NIC-TS signals of four channels

Fig. 10. Degradation feature SI extracted from TSA signal of four channels

Fig. 14. Rotation speed of gearbox RTF data

Fig. 15. Load of gearbox RTF data

Fig. 11. Comparison of SI extracted from TSA and NIC-TS signals of channel 
four
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