PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Autonomous anomaly detection system for crime monitoring and alert generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, violence has a major impact in society. Violence metrics increasing very rapidly reveal a very alarming situation. Many violent events go unnoticed. Over the last few years, autonomous vehicles have been used to observe and recognize abnormalities in human behavior and to classify them as crimes or not. Detecting crime on live streams requires classifying an event as a crime or not a crime and generating alerts to designated authorities, who can in turn take the required actions and assess the security of the city. There is currently a need for this kind of effective techniques for live video stream processing in computer vision. There are many techniques that can be used, but Long Short-Term Memory (LSTM) networks and OpenCV provide the most accurate prediction for this task. OpenCV is used for the task of object detection in computer vision, which will take the input from either a drone or any autonomous vehicle. LSTM is used to classify any event or behavior as a crime or not. This live stream is also encrypted using the Elliptic curve algorithm for more security of data against any manipulation. Through its ability to sense its surroundings, an autonomous vehicle is able to operate itself and execute critical activities without the need for human interaction. Much crowd-based crimes like mob lynching and individual crimes like murder, burglary, and terrorism can be protected against with advanced deep learning-based Anamoly detection techniques. With this proposed system, object detection is possible with approximately 90% accuracy. After analyzing all the data, it is sent to the nearest concern department to provide the remedial approach or protect from any crime. This system helps to enhance surveillance and decrease the crime rate in society.
Słowa kluczowe
Twórcy
autor
  • Medi-Caps University, Indore
  • Medi-Caps University, Indore
autor
  • Medi-Caps University, Indore
Bibliografia
  • [1] B.M. Peixoto, B. Lavi, Z. Dias, A. Rocha, “Harnessing high-level concepts, visual, and auditory features for violence detection in videos”, Journal of Visual Communication and Image Representation, 10.1016/j.jvcir.2021.103174
  • [2] Y. Gao, H. Liu, X. Sun, C. Wang, Y. Liu, “Violence detection using Violent Flows”, 10.1016/j.imavis.2016.01.006
  • [3] T. Hassner, Y. Itcher & Y. Itcher, Violent Flows: Real-Time Detection of Violent Crowd Behavior, IEEE, 2012, www.openu.ac.il/home/hassner/data/violentflows/ 978-1-4673-1612-5/12/$31.00
  • [4] C. Ding, S. Fan, M. Zhu, W. Feng, and B. Jia, “Violence detection in video by using 3D convolutional neural networks”, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8888, 2014, pp. 551–558. 10.3390/app11083523
  • [5] G. Mu, H. Cao, and Q. Jin, “Violent Scene Detection Using Convolutional Neural Networks and Deep Audio Features,” 2008, pp. 645–651. 10.1109/ICCSP48568.2020.9182433
  • [6] G. Sakthivinayagam, R. Easawarakumar, A. Arunachalam, and M.Pandi, “Violence Detection System using Convolution Neural Network”, SSRG Int. J. Electron. Commun. Eng., vol. 6, 2019, pp. 6–9.
  • [7] B. Peixoto, B. Lavi, and P. Martin, “Toward subjective violence detection in videos”, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.,2019, pp. 8276–8280.
  • [8] A. Hanson, K. Pnvr, S. Krishnagopal, and L. Davis, “Bidirectional convolutional LSTM for the detection of violence in videos”, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.Notes Bioinformatics), vol. 11130 LNCS, 2019, pp. 280–295.
  • [9] S. Soner, R. Litoriya, and P. Pandey, “Exploring Blockchain and Smart Contract Technology for Reliable and Secure Land Registration and Record Management,” Wireless Personal Communications, Aug. 2021.
  • [10] C. Dhiman and D. K. Vishwakarma, “A review of state-of-the-art techniques for abnormal human activity recognition,” Eng. Appl. Artif. Intell., vol. 77, no. 2018 Aug, 2019, pp. 21–45.
  • [11] S. Soner, A. Jain, A. Tripathi, R. Litoriya, “A novel approach to calculate the severity and priority of bugs in software projects”, 2nd International conference on education technology and computer, vol. 2, 2010, pp. V2-50-V2-54. 10.1109/ICETC.2010.5529438.
  • [12] O. Kliper-Gross, T. Hassner, and L. Wolf, “The action similarity labeling challenge”, TPAMI, vol. 99, 2012.
  • [13] Q. Dai et al., “Fudan-Huawei at MediaEval 2015: Detecting violent scenes and affective impact in movies with deep learning”, CEUR Workshop Proc., vol. 1436, 2015, pp. 5–7.
  • [14] Y. Pritch, S. Ratovitch, A. Hendel, and S. Peleg. “Clustered synopsis of surveillance video”, In Advanced Video and Signal Based Surveillance, 2009, pp. 195–200.
  • [15] R. Retoliya, S. Soner, “RSA Based Threshold Cryptography for Secure Routing and Key Exchange in Group Communication”, International Conference on Advances in Communication, Network, and Computing, vol. 142, pp. 624-627.
  • [16] E.Y. Fu, H.V. Leong, G. Ngai, S.C.F. Chan, „Automatic fight detection in surveillance videos”, Int. J. Pervasive Comput. Commun., vol. 13, no. 2, 2017, pp. 130–156.
  • [17] T. Senst, V. Eiselein, A. Kuhn, T. Sikora, “Crowd violence detection using global motion-compensated Lagrangian features and scale-sensitive video-level representation”, IEEE Trans. Inf. Forensics Secur., vol. 12, no. 12, 2017, pp. 2945–2956.
  • [18] A. Hanson, K. PNVR, S. Krishnagopal, L. Davis, “Bidirectional convolutional LSTM for the detection of violence in videos”, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
  • [19] X. Zhai, A. Oliver, A. Kolesnikov, L. Beyer, “S4L: Self-supervised semi-supervised learning”, in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  • [20] C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, S. Tubaro, “Automatic reliability estimation for speech audio surveillance recordings”, in: The IEEE International Workshop on Information Forensics and Security, WIFS, 2019.
  • [21] K. Gkountakos, K. Ioannidis, T. Tsikrika, S. Vrochidis, I. Kompatsiaris, “Crowd Violence Detection from Video Footage”, 2021 International Conference on Content-Based Multimedia Indexing (CBMI), INSPEC Accession Number: 20729035, 10.1109/CBMI50038.2021.9461921
  • [22] K. Gkountakos, K. Ioannidis, T. Tsikrika, S. Vrochidis, and I. Kompatsiaris, „A crowd analysis framework for detecting violence scenes”, Proceedings of the 2020 International Conference onMultimedia Retrieval, 2020, pp. 276-280.
  • [23] S. Soner, A. Jain, D. Saxena, “Metrics calculation for deployment process”, 2010 2nd International Conference on Software Technology and Engineering, 2010. 10.1109/ICSTE.2010.5608760
  • [24] M. Sharma, R. Baghel, “Video Surveillance for Violence Detection Using Deep Learning”, In: Advances in Data Science and Management, Springer: Berlin/Heidelberg, Germany, 2020, pp. 411–420.
  • [25] E. Ditsanthia, L. Pipanmaekaporn, and S. Kamonsantiroj, “Video Representation Learning for CCTV-Based Violence Detection”, TIMES-iCON 2018 - 3rd Technol. Innov. Manag. Eng. Sci. Int. Conf., 2019, pp. 1–5.
  • [26] F. U. M. Ullah, A. Ullah, K. Muhammad, I. U. Haq, and S. W. Baik, “Violence detection using spatiotemporal features with 3D convolutional neural network”, Sensors (Switzerland), vol. 19, no. 11, 2019, pp. 1–15.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-071e41f7-551f-49b4-98af-9ee5afee530a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.