PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simplified method for determination of the optimal feed temperature for hydrogen peroxide decomposition process occurring in an immobilized enzyme packed-bed reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
Simplified optimization method using the MATLAB function fminbnd was adopted to determine the optimal feed temperature (OFT) for an isothermal packed-bed reactor (PBR) performing hydrogen peroxide decomposition (HPD) by immobilized Terminox Ultra catalase (TUC). The feed temperature was determined to maximize (minimize) the average reactant conversion (reactant concentration) over a fixed period time at the reactor outlet. The optimization was based on material balance and rate equation for enzyme action and decay and considered the effect of mass-transfer limitations on the system behavior. In order to highlight the relevance and applicability of the work reported here, the case of optimality under isothermal operating conditions is considered and the practical example is worked out. Optimisation method under consideration shows that inappropriate selection of the feed temperature may lead to a decrease in the bioreactor productivity.
Rocznik
Strony
art. no. e45
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
  • Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Agrawal K., Verma P., 2019. Column bioreactor of immobilized Stropharia sp. ITCC 8422 on natural biomass support of L. cylindrica for biodegradation of anthraquinone violet R. Bioresour. Technol. Rep., 8, 1003450. DOI: 10.1016/j.biteb.2019.100345.
  • 2. Arvin E., Lars-Flemming P., 2015. Hydrogen peroxide decomposition kinetics in aquaculture water. Aquacult. Eng., 64, 1–7. DOI: 10.1016/j.aquaeng.2014.12.004.
  • 3. Baral B., Nial P.S., Subudhi U., 2023. Enhanced enzymatic activity and conformational stability of catalase in presence of tetrahedral DNA nanostructures: A biophysical and kinetic study. Int. J. Biol. Macromol., 242, 124677. DOI: 10.1016/j.ijbiomac.2023.124677.
  • 4. Carrazco-Escalante M., Caro-Corrales J., Iribe-Salazar R., RíosIribe E., Vázquez-López Y., Gutiérrez-Dorado R., Hernández-Calderón O., 2019. A new approach for describing and solving the reversible Briggs-Haldane mechanism using immobilized enzyme. Can. J. Chem. Eng., 98, 316–329. DOI: 10.1002/cjce.23528.
  • 5. Carrié M., Velly H., Ben-Chaabane F., Gabelle J.-C., 2022. Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochem. Eng. J., 180, 108355. DOI: 10.1016/j.bej.2022.108355.
  • 6. Coutu A., Dochain D., Mottelet S., André L., Mercier-Huat M., Pauss A., Ribeiro T., 2023. Dynamical model development and parameter identification for solid-state anaerobic digestion of shellfish products: Application to Mytilus edulis. Bioresour. Technol. Rep., 22, 101458. DOI: 10.1016/j.biteb.2023.101458.
  • 7. Danial E.N., Alkhalaf M.I., 2020. Co-immobilisation of superoxide dismutase and catalase using an in vitro encapsulation protocol. J. King Saud Univ. Sci., 32, 2489–2494. DOI: 10.1016/j.jksus.2020.04.003.
  • 8. De Prá M.C., Bonassa G., Bortoli M., Soares H.M., Kunz A., 2021. Novel one-stage reactor configuration for deammonification process: Hydrodynamic evaluation and fast start-up of NITRAMMOX R©reactor. Biochem. Eng. J., 171, 108005. DOI: 10.1016/j.bej.2021.108005.
  • 9. Do D.D., Weiland R.H., 1981a. Catalyst deactivation in an isothermal CSTR with first-order chemical kinetics. Chem. Eng. J., 21, 115–122. DOI: 10.1016/0300-9467(81)80042-1.
  • 10. Do D.D., Weiland R.H., 1981b. Fixed bed reactors with catalyst poisoning: First order kinetics. Chem. Eng. Sci., 36, 97–104. DOI: 10.1016/0009-2509(81)80051-6.
  • 11. Eberhardt A.M., Pedroni V., Volpe M., Ferreira M.L., 2004. Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H2O2 decomposition. Appl. Catal., B, 47, 153–163. DOI: 10.1016/j.apcatb.2003.08.007.
  • 12. Fruhwirth G., Paar A., Gudelj M., Cavaco-Paulo A., Robra K.-H., Gübitz G., 2002. An immobilized catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Appl. Microbiol. Biotechnol., 60, 313–319. DOI: 10.1007/s00253-002-1127-0.
  • 13. George P., 1947. Reaction between catalase and hydrogen peroxide. Nature, 160, 41–43. DOI: 10.1038/160041a0.
  • 14. Ghadermarzi M., Moosavi-Movahedi A.A., 1996. Determination of the kinetic parameters for the “suicide substrate” inactivation of bovine liver catalase by hydrogen peroxide. J. Enzym Inhib., 10, 167–175. DOI: 10.3109/14756369609030310.
  • 15. Goldsmith M., Tawfik D.S., 2017. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol., 47, 140–150. DOI: 10.1016/j.sbi.2017.09.002.
  • 16. Grigoras A.G., 2017. Catalase immobilization – A review. Biochem. Eng. J., 117, 1–20. DOI: 10.1016/j.bej.2016.10.021.
  • 17. Grubecki I., 2010a. Comparison between isothermal and optimal temperature policy for batch process with parallel (bio)-catalyst deactivation. J. Chem. Eng. Jpn., 43, 1014–1019. DOI: 10.1252/jcej.08we219.
  • 18. Grubecki I., 2010b. Optimal temperature control in a batchbioreactor with parallel deactivation of enzyme. J. Process Control, 20, 573–584. DOI: 10.1016/j.jprocont.2010.02.009.
  • 19. Grubecki I., 2016. How to run biotransformations – At the optimal temperature control or isothermally? Mathematical assessment. J. Process Control, 44, 79–91. DOI: 10.1016/j.jprocont.2016.05.005
  • 20. Grubecki I., 2017. External mass transfer model for hydrogen peroxide decomposition by Terminox Ultra catalase in a packed-bed reactor. Chem. Process Eng., 38, 307–319. DOI: 10.1515/cpe-2017-0024.
  • 21. Grubecki I., 2018a. Optimal feed temperature for an immobilized enzyme fixed-bed reactor: A case study on hydrogen peroxide decomposition by commercial catalase. Chem. Process Eng., 39, 39–57. DOI: 10.24425/119098.
  • 22. Grubecki I., 2018b. Optimal feed temperature for hydrogen peroxide decomposition process occurring in the bioreactor with fixed-bed of commercial catalase: A case study on thermal deactivation of enzyme. Chem. Process Eng., 39, 491–501. DOI: 10.24425/cpe.2018.124974.
  • 23. Grubecki I., 2020. Analytical determination of the optimal feed temperature for hydrogen peroxide decomposition process occurring in bioreactor with a fixed-bed of commercial catalase. Catalysts, 11, 35. DOI: 10.3390/catal11010035.
  • 24. Grubecki I., Wójcik M., 2013. How much of enzyme can be saved in the process with the optimal temperature control? J. Food Eng., 116, 255–259. DOI: 10.1016/j.jfoodeng.2012.12.019.
  • 25. Harmand J., Dochain D., 2005. The optimal design of two interconnected (bio)chemical reactors revisited. Comput. Chem. Eng., 30, 70–82. DOI: 10.1016/j.compchemeng.2005.08.003.
  • 26. Harmand J., Rapaport A., Dochain D., Lobry C., 2008. Microbial ecology and bioprocess control: Opportunities and challenges. J. Process Control, 18, 865–875. DOI: 10.1016/j.jprocont.2008.06.017.
  • 27. Illanes A., Wilson L., Vera C., 2014. Problem solving in enzyme biocatalysis. 1st edition, John Wiley & Sons Ltd, Chichester, United Kingdom. DOI: 10.1002/9781118341742.
  • 28. Leipold J., Seidel C., Nikolic D., Seidel-Morgenstern A., Kienle A., 2023. Optimization of methanol synthesis under forced periodic operation in isothermal fixed-bed reactors. Comput. Chem. Eng., 175, 108285. DOI: 10.1016/j.compchemeng. 2023.108285.
  • 29. Li M., Christofides P.D., 2008. Optimal control of diffusionconvection-reaction processes using reduced-order models.Comput. Chem. Eng., 32, 2123–2135. DOI: 10.1016/j.compchemeng.2007.10.018.
  • 30. Lima P.S., Inacio A.T., Moreira Y.C., César D.E., Dias R.J.P., Dezotti M., Bassin J.P., 2021. Upgrade of a suspended biomass reactor with limited nitrification to a biofilm system: Addressing critical parameters and performance in different reactor configurations. Biochem. Eng. J., 170, 107987. DOI: 10.1016/j.bej.2021.107987.
  • 31. Liu C., Tian H., Gu X., Li N., Zhao X., Lei M., Alharbi H., Megharaj M., He W., Kuzyakov Y., 2022. Catalytic efficiencyof soil enzymes explains temperature sensitivity: Insights from physiological theory. Sci. Total Environ., 822, 153365. DOI: 10.1016/j.scitotenv.2022.153365.
  • 32. Malikkides C.O., Weiland R.H., 1982. On the mechanism of immobilized glucose oxidase deactivation by hydrogen peroxide. Biotechnol. Bioeng., 24, 2419–2439. DOI: 10.1002/bit.260241109.
  • 33. Maria G., Crisan M., 2015. Evaluation of optimal operation alternatives of reactors used for D-glucose oxidation in a bienzymatic system with a complex deactivation kinetics. Asia-Pac. J. Chem. Eng., 10, 22–44. DOI: 10.1002/apj.1825.
  • 34. Mazziero V.T., Batista V.G., de Oliveira D.G., Scontri M., de Paula A.V., Cerri M.O., 2022. Characterization of packed-bedin the downcomer of a concentric internal-loop airlift bioreactor. Biochem. Eng. J., 181, 108407. DOI: 10.1016/j.bej.2022. 108407.
  • 35. Mehrotra R., Richezzi M., Palopoli C., Hureau C., Signorella S.R., 2020. Effect of coordination dissymmetry on the catalytic activity of manganese catalase mimics. J. Inorg. Biochem., 213, 111264. DOI: 10.1016/j.jinorgbio.2020.111264.
  • 36. Miłek J., 2018. Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation. Braz. J. Chem. Eng., 35, 995–1004. DOI: 10.1590/0104-6632.20180353s20160617.
  • 37. Miłek J., 2020. Thermal deactivation of Saccharomyces cerevisiae catalase. Przem. Chem., 99, 128–130. DOI: 10.15199/62.2020.3.17.
  • 38. Ordaz A., Ramirez R., Hernandez-Martinez G.R., Carrión M., Thalasso F., 2019. Characterization of kinetic parameters and mass transfer resistance in an aerobic fixed-bed reactor by in-situ respirometry. Biochem. Eng. J., 146, 194–202. DOI: 10.1016/j.bej.2019.03.024.
  • 39. Ortega R., Bobtsov A., Nikolaev N., Schiffer J., Dochain D., 2021. Generalized parameter estimation-based observers: Application to power systems and chemical–biological reactors. Automatica, 129, 109635. DOI: 10.1016/j.automatica.2021. 109635.
  • 40. Razavi B.S., Blagodatskaya E., Kuzyakov Y., 2016. Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil Biol. Biochem., 97, 15–22. DOI: 10.1016/j.soilbio.2016.02.018.
  • 41. Robles A., Capson-Tojo G., Ruano M.V., Latrille E., Steyer J.P., 2018. Development and pilot-scale validation of a fuzzylogic control system for optimization of methane production in fixed-bed reactors. J. Process Control, 68, 96–104. DOI: 10.1016/j.jprocont.2018.05.007.
  • 42. Samson M., Yang T., Omar M., Xu M., Zhang X., Alphonse U., Rao Z., 2018. Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme Microb. Technol., 119, 10–16. DOI: 10.1016/j.enzmictec.2018.08.002.
  • 43. Schorsch J., Castro C.C., Couto L.D., Nobre C., Kinnaert M., 2019. Optimal control for fermentative production of fructooligosaccharides in fed-batch bioreactor. J. Process Control, 78, 124–138. DOI: 10.1016/j.jprocont.2019.03.004.
  • 44. Sooch B.S., Kauldhar B.S., Puri M., 2014. Recent insights into microbial catalases: Isolation, production and purification. Biotechnol. Adv., 32, 1429–1447. DOI: 10.1016/j.biotechadv.2014.09.003.
  • 45. Sun B., Zhu H., Jin Y., Qiao K., Xu W., Jiang J., 2019. Rapid hydrogen peroxide decomposition using a microreactor. Chem.Eng. Technol., 42, 252–256. DOI: 10.1002/ceat.201800319.
  • 46. Tezer Ö., Karabağ N., Öngen A., Ayol A., 2023. Gasification performance of olive pomace in updraft and downdraft fixed bed reactors. Int. J. Hydrogen Energy, 48, 22909-22920. DOI: 10.1016/j.ijhydene.2023.02.088.10 of 11 https://journals.pan.pl/cpe Chem. Process Eng., 2023, 44(4), e45 A simplified method for determination of the optimal feed temperature for hydrogen peroxide .
  • 47. Trawczyńska I., 2020. New method of determining kinetic parameters for decomposition of hydrogen peroxide by catalase. Catalysts, 10, 323. DOI: 10.3390/catal10030323.
  • 48. Vasudevan P.T., Weiland R.H., 1990. Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng., 36, 783–789. DOI: 10.1002/bit.260360805.
  • 49. Vishnu Priya B., Sreenivasa Rao D.H., Gilani R., Lata S., Rai N., Akif M., Kumar Padhi S., 2022. Enzyme engineering improves catalytic efficiency and enantioselectivity of hydroxynitrile lyase for promiscuous retro-nitroaldolase activity. Bioorg. Chem., 120, 105594. DOI: 10.1016/j.bioorg.2021.105594.
  • 50. Xiu G.-H., Jiang L., Li P., 2001. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor. Biotechnol. Bioeng., 74, 29–39. DOI: 10.1002/bit.1092.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0710f5fd-12eb-4740-9b35-c2e5dc749718
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.