Identyfikatory
Warianty tytułu
Wysokotemperaturowe powłoki ochronne i metody ich analizy
Języki publikacji
Abstrakty
Materials used for elements of the hot part of aircraft engines must fulfill a number of requirements, including high temperature corrosion resistance, durability and good strength in a wide temperature range. The continuous increase in engines’ efficiency by increasing their operating temperature resulted in the need to use heat-resistant protective coatings. Currently, aluminum layers or multi-component MCrAlY alloys are used. However, the use of an alternative fuel in the form of hydrogen means that the coatings must be resistant to water vapor at high temperatures. Hence, the work proposes high entropy alloys (HEA) as a candidate for materials for protective coatings. At the same time, basic methods for analyzing high-temperature corrosion products on the mentioned protective coatings are presented.
Materiały stosowane na elementy gorącej części silników lotniczych muszą spełniać wiele wymagań, przede wszystkim musi je cechować wysoka żaroodporność, trwałość, jak również dobra wytrzymałość w szerokim zakresie temperatury. Ciągłe zwiększanie sprawności silników poprzez podnoszenie temperatury ich pracy spowodowało, że konieczne stało się stosowanie żaroodpornych powłok ochronnych. Obecnie stosuje się warstwy aluminidkowe lub wieloskładnikowe stopy typu MCrAlY. Używanie wodoru jako paliwa alternatywnego sprawia, że powłoki muszą być odporne na działanie pary wodnej w wysokiej temperaturze. W pracy zaproponowano stopy o wysokiej entropii mieszania (HEA) jako potencjalne materiały na powłoki ochronne. Przedstawiono także podstawowe metody analizy produktów korozji wysokotemperaturowej na takich powłokach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
120--125
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Science, Faculty of Mechanical and Aeronautical Engineering, Rzeszow University of Technology, Rzeszów, Poland
autor
- Road and Bridge Research Institute, Department of Corrosion and Chemistry, Warsaw, Poland
Bibliografia
- [1] J. R. Davis (ed.). 1997. ASM Specialty Handbook: Heat-Resistant Materials. Materials Park, Ohio: ASM International.
- [2] R. C. Reed. 2006. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press.
- [3] D. J. Young. 2008. High Temperature Oxidation and Corrosion of Metals. Amsterdam: Elsevier.
- [4] M. Schütze, W. J. Quadakker. 2017. “Future Directions in the Field of High-Temperature Corrosion Research.” Oxidation of Metals 87: 681–704. DOI: 10.1007/s11085-017-9719-3.
- [5] M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, R. Filip. 2013. “Microstructure and Oxidation Resistance of an Aluminide Coating on the Nickel Based Superalloy MAR M247 Deposited by the CVD Aluminizing Process.” Archives of Metallurgy and Materials 58(3): 697–701. DOI: 10.2478/amm2013-0057.
- [6] W. J. Nowak, M. Tomków, P. Wierzba, K. Gancarczyk, B. Wierzba. 2020. “The Role of Substrate Surface Roughness on in-Pack Aluminization Kinetics of Ni-Base Superalloy.” Journal of Manufacturing and Material Processes 4(1): 15. DOI: 10.3390/jmmp4010015.
- [7] R. Darolia. 2013. “Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects.” International Materials Reviews 58(6): 315–348. DOI: 10.1179/1743280413Y.0000000019.
- [8] W. Nowak, D. Naumenko, G. Mor, F. Mor, D. E. Mack, R. Vassen, L. Singheiser, W. J. Quadakkers. 2014. “Effect of Processing Parameters on MCrAlY Bondcoat Roughness and Lifetime of APS-TBC Systems.” Surface and Coatings Technology 260: 82–89. DOI: 10.1016/j.surfcoat.2014.06.075.
- [9] W. J. Nowak, M. Drajewicz, M. Góral, R. Smusz, P. Cichosz, A. Majka, J. Sęp. 2023. “Design of Newly Developed Burner Rig Operating with Hydrogen Rich Fuel Dedicated for Materials Testing.” Advances in Mechanical and Materials Engineering 40(1): 203–214. DOI: 10.7862/rm.2023.20.
- [10] E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, M. D. Allendorf. 2007. “Theoretical and Experimental Investigation of the Thermochemistry of CrO2(OH)2(g).” Journal of Physical Chemistry A 111(10): 1971–1980. DOI: 10.1021/jp0647380.
- [11] W. J. Nowak, P. Wierzba, D. Naumenko, W. J. Quadakkers, J. Sieniawski. 2016. “Water Vapour Effect on High Temperature Oxidation Behaviour of Superalloy Rene 80.” Advances in Manufacturing Science and Technology 40(2): 41–52. DOI: 10.2478/amst-2016-0009.
- [12] M. C. Maris-Sida, G. H. Meier, F. S. Pettit. 2003. “Some Water Vapor Effects during the Oxidation of Alloys That Are α-Al2O3 Formers.” Metallurgical and Materials Transactions A 34: 2609–2619. DOI: 10.1007/s11661-003-0020-5.
- [13] K. Wollgarten, T. Galiullin, W. J. Nowak, W. J. Quadakkers, D. Naumenko. 2020. “Effect of Alloying Additions and Presence of Water Vapour on Short- -Term Air Oxidation Behaviour of Cast Ni-Base Superalloys.” Corrosion Science 173: 108774. DOI: 10.1016/j.corsci.2020.108774.
- [14] D. M. England, A. V. Virkar. 1999. “Oxidation Kinetics of Some Nickel‐Based Superalloy Foils and Electronic Resistance of the Oxide Scale Formed in Air: Part I.” Journal of The Electrochemical Society 146(9): 3196–3202. DOI: 10.1149/1.1392454.
- [15] D. M. England, A. V. Virkar. 2001. “Oxidation Kinetics of Some Nickel-Based Superalloy Foils in Humidified Hydrogen and Electronic Resistance of the Oxide Scale Formed: Part II.” Journal of The Electrochemical Society 148(4): A330–A338. DOI: 10.1149/1.1354611.
- [16] J.-W. Yeh. 2006. “Recent Progress in High-Entropy Alloys.” Annales De Chimie – Science des Materiaux 31(6): 633–648.
- [17] T. M. Butler, M. L. Weaver. 2016. “Influence of Annealing on the Microstructures and Oxidation Behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 High-Entropy Alloys.” Metals 6(9): 222. DOI: 10.3390/met6090222.
- [18] J.-P. Pfeifer, H. Holzbrecher, W. J. Quadakkers, U. Breuer, W. Speier. 1993. “Quantitative Analysis of Oxide Films on ODS-Alloys Using MCs+ -SIMS and E-Beam SNMS.” Fresenius’ Journal of Analytical Chemistry 346: 186–191. DOI: 10.1007/BF00321410.
- [19] W. J. Quadakkers, A. Elschner, W. Speier, H. Nickel. 1991. “Composition and Growth Mechanisms of Alumina Scales on FeCrAl-Based Alloys Determined by SNMS.” Applied Surface Science 52(4): 271–287. DOI: 10.1016/0169-4332(91)90069-V.
- [20] W. J. Nowak. 2017. “Characterization of Oxidized Ni-Based Superalloys by GD-OES.” Journal of Analytical Atomic Spectrometry 32(9): 1730–1738. DOI: 10.1039/C7JA00069C.
- [21] J. Ma, X. Liu, J. Chen, X. Liu, H. Zhang, B. Wang, G. Feng. 2022. “Investigation of the Interfacial Characteristics and Mechanical Properties of Duplex Stainless Steel/Low-Alloy Steel Clad Rebar.” Metals 12(10): 1573. DOI: 10.3390/met12101573.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-070d66f2-9fe5-4ecd-8f7b-ab10e1f2477e