Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We establish the existence and multiplicity of solutions for some boundary value problems on time scales with a y-Laplacian operator. For this purpose, we employ the concept of lower and upper solutions and the Leray-Schauder degree. The results extend and improve known results for analogous problems with discrete p-Laplacian as well as those for boundary value problems on time scales.
Czasopismo
Rocznik
Tom
Strony
405--425
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Universidad de Buenos Aires & IMAS-CONICET Facultad de Ciencias Exactas y Naturales Departamento de Matematica Ciudad Universitaria, Pabellón I, Buenos Aires (1428), Argentina
autor
- Universidad de Buenos Aires & IMAS-CONICET Facultad de Ciencias Exactas y Naturales Departamento de Matematica Ciudad Universitaria, Pabellón I, Buenos Aires (1428), Argentina
autor
- Universidad de Buenos Aires & IMAS-CONICET Facultad de Ciencias Exactas y Naturales Departamento de Matematica Ciudad Universitaria, Pabellón I, Buenos Aires (1428), Argentina
Bibliografia
- [1] E. Akin, Boundary value problems for a differential equation on a measure chain, PanAmerican Mathematical Journal 10 (2000) 3, 17-30.
- [2] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
- [3] H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal. 11 (1972), 346-384.
- [4] C. Bereanu, J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular (p-Laplacian, J. Differential Equations 243 (2007), 536-557.
- [5] C. Bereanu, J. Mawhin, Periodic solutions of nonlinear perturbations of -Laplacians with possibly bounded , Nonlinear Anal. 68 (2008), 1668-1681.
- [6] C. Bereanu, H.B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete
- [7] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston, Massachusetts, 2001.
- [8] M. Bohner, A. Peterson (eds.), Advances in Dynamic Equations on Time Scales, Birkhauser Boston, Massachusetts, 2003.
- [9] A. Cabada, Extremal solutions and Green's functions of higher order periodic boundary value problems in time scales, J. Math. Anal. Appl. 290 (2004), 35-54.
- [10] C. De Coster, P. Habets, The lower and upper solutions method for boundary value problems, [in:] Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, 2004, 69-160.
- [11] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [12] M. Galewski, S. Glab, On the discrete boundary value problem for anisotropic equation, J. Math. Anal. Appl. 386 (2012), 956-965.
- [13] A. Guiro, I. Nyanquini, S. Ouaro, On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Difference Equ. 2011 (2011), Article no. 32.
- [14] J. Henderson, C.C. Tisdell, Topological transversality and boundary value problems on time scales, J. Math. Anal. Appl. 289 (2004), 110-125.
- [15] S. Hilger, Ein Mafikettenkalkul mit Anwendung auf Zentrumsmanningfaltingkeiten, PhD thesis, Universitat Wurzburg, 1988.
- [16] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results in Mathematics 18 (1990) 1-2, 18-56.
- [17] Y. Kolesov, Periodic solutions of quasilinear parabolic equations of second order, Trans. Moscow Math. Soc. 21 (1970), 114-146.
- [18] R. Manasevich, J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc. 37 (2000), 665-685.
- [19] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS series no. 40, American Math. Soc, Providence RI, 1979.
- [20] P. Stehlik, Periodic boundary value problems on time scales, Adv. Difference Equ. 1 (2005), 81-92.
- [21] Y. Tian, W. Ge, Existence of multiple positive solutions for discrete problems with p-Laplacian via variational methods, Electron. J. Differential Equations 45 (2011), 1-8.
- [22] S.G. Topal, Second-order periodic boundary value problems on time scales, J. Comput. Appl. Math. 48 (2004), 637-648.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0709b412-3b06-4bb8-ae34-d4e706ab9e75