Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effects of cold rolling, subsequent continuous heating, and aging on the microstructure and tensile properties of AISI 904L superaustenitic stainless steel were investigated. During cold rolling, the austenite phase showed high mechanical stability against the deformation-induced martensitic transformation. However, work-hardening during cold deformation manifested itself into high strength and reduced ductility for the material during subsequent tensile testing. Upon continuous heating to hot temperatures, the cold worked sample started to recrystallize, and as a result, a fine recrystallized microstructure with an average grain size of 3.5 μm and fine Cr–Mo-rich σ-phase precipitates were obtained for the sample heated up to 925°C. Heating up to higher temperatures led to the coarsening of austenite grains and the dissolution of the σ-phase. Grain refinement during thermomechanical processing significantly improved the yield stress, as expressed by the Hall- Petch (HP) relation. However, precipitation of the intragranular σ-phase led to deviations from the HP-relation, reflected in enhanced yield stresses or different slopes. Moreover, the formation of the σ-phase during aging adversely affected the elongation to failure.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. e247, 1--10
Opis fizyczny
Bibliogr. 45 poz., il., wykr.
Twórcy
autor
- University of Tehran, College of Engineering, School of Metallurgy and Materials Engineering, Tehran, Iran
autor
- University of Tehran, College of Engineering, School of Metallurgy and Materials Engineering, Tehran, Iran
autor
- Austrian Academy of Sciences, Erich Schmid Institute of Materials Science, Leoben, Austria
Bibliografia
- 1. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Geranmayeh AR, Mahmudi R. Tailoring the strength-ductility balance of a commercial austenitic stainless steel with combined TWIP and TRIP effects. Arch Civil Mech Eng. 2023;23(3):170.
- 2. Sohrabi MJ, Mirzadeh H, Dehghanian C. Unraveling the effects of surface preparation on the pitting corrosion resistance of austenitic stainless steel. Arch Civil Mech Eng. 2020;20:8.
- 3. Huang M, Wang L, Wang C, Mogucheva A, Xu W. Characterization of deformation-induced martensite with various AGS supon Charpy impact loading and correlation with transformation mechanisms. Mater Charact. 2022;184: 111704.
- 4. Li J, Qin W, Peng P, Chen M, Mao Q, Yue W, Kang J, Meng D, She D, Zhu X, Li Y. Effects of geometric dimension and grain size on impact properties of 316L stainless steel. Mater Lett. 2021;284: 128908.
- 5. Sohrabi MJ, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: a review. Arch Civil Mech Eng. 2020;20:1-24.
- 6. Li J, Gao B, Huang Z, Zhou H, Mao Q, Li Y. Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum. 2018;157:128-35.
- 7. Qin W, Li J, Liu Y, Kang J, Zhu L, Shu D, Peng P, She D, Meng D, Li Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater Lett. 2019;254:116-9.
- 8. Babu KA, Prithiv TS, Gupta A, Mandal S. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method. Comput Mater Sci. 2021;195: 110482.
- 9. Momeni A, Dehghani K, Keshmiri H, Ebrahimi GR. Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel. Mater Sci Eng A. 2010;527(6):1605-11.
- 10. Plaut RL, Herrera C, Escriba DM, Rios PR, Padilha AF. A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res. 2007;10:453-60.
- 11. Dagur AH, Kartha AA, Subodh MA, Vishnu C, Arun D, Kumar MGV, Abraham WS, Chatterjee A, Abraham J, Abraham J. Microstructure, mechanical properties and bio-corrosion behavior of dissimilar welds of AISI 904L and UNS S32750. J Manuf Process. 2017;30:27-40.
- 12. Koppula S, Jagarlamudi VG, Prudhvi RS, Rajkumar A, Prashanth S, Saranya J, Sateesh N, Subbiah R. Investigation of AISI 904L austenitic stainless steel by carbonitriding process under dry sliding conditions. Mater Today. 2021;44:1418-22.
- 13. Kangas P, Chai GC. Use of advanced austenitic and duplex stainless steels for applications in oil & gas and process industry. Adv Mater Res. 2013;794:645-69. 1
- 4. Tehovnik F, Žužek B, Arh B, Burja J, Podgornik B. Hot rolling of the superaustenitic stainless steel AISI 904L. Mater Tehnol. 2014;48(1):137-40.
- 15. Bogdanowicz Z, Jóźwik P, Nasiłowska B. Microstructure and mechanical behavior of a CO2 laser and TIG welded 904L steel. Metall Foundry Eng. 2014;40(2):69-81.
- 16. Tehovnik F, Burja J, Arh B, Vode F. Precipitation of σ phase in superaustenitic stainless steel UHB 904L. Metalurgija. 2017;56(1–2):63-6.
- 17. Ramkumar KD, Choudhary A, Aggarwal S, Srivastava A, Mohan TH, Arivazhagan N. Characterization of microstructure and mechanical properties of continuous and pulsed current gas tungsten arc welded superaustenitic stainless steel. J Mater Res. 2015;30(10):1727-46.
- 18. Han Y, Liu G, Zou D, Liu R, Qiao G. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression. Mater Sci Eng, A. 2013;565:342-50.
- 19. Stornelli G, Gaggiotti M, Mancini S, Napoli G, Rocchi C, Tirasso C, Di Schino A. Recrystallization and grain growth of AISI 904L super-austenitic stainless steel: a multivariate regression approach. Metals. 2022;12(2):200.
- 20. Zhang W, Zhang J, Han Y, Liu R, Zou DN, Qiao GJ. Meta-dynamic recrystallization behavior of As-cast 904L superaustenitic stainless steel. J Iron Steel Res Int. 2016;23(2):151-9.
- 21. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Grain size dependent mechanical behavior and TRIP efect in a metastable austenitic stainless steel. Int J Plast. 2023;160: 103502.
- 22. Naghizadeh M, Mirzadeh H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A. 2018;49:2248-56.
- 23. Järvenpää A, Jaskari M, Kisko A, Karjalainen P. Processing and properties of reversion-treated austenitic stainless steels. Metals. 2020;10(2):281.
- 24. Lee CY, Yoo CS, Kermanpur A, Lee YK. The effects of multi-cyclic thermo-mechanical treatment on the grain refinement and tensile properties of a meta-stable austenitic steel. J Alloy Compd. 2014;583:357-60.
- 25. Anburaj J, Nazirudeen SM, Narayanan R, Anandavel B, Chandrasekar A. Ageing of forged superaustenitic stainless steel: Precipitate phases and mechanical properties. Mater Sci Eng A. 2012;535:99-107.
- 26. Lee TH, Kim SJ, Jung YC. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 C. Metall Mater Trans A. 2000;31(7):1713-23.
- 27. Villanueva DE, Junior FCP, Plaut RL, Padilha AF. Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex. Mater Sci Technol. 2006;22(9):1098-104.
- 28. Heino S, Knutson-Wedel EM, Karlsson B. Precipitation behaviour in heat affected zone of welded superaustenitic stainless steel. Mater Sci Technol. 1999;15(1):101-8.
- 29. Mirzadeh H. Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review. J Mark Res. 2023;25:7050-77.
- 30. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Explaining the drop of work-hardening rate and limitation of transformation induced plasticity effect in metastable stainless steels during tensile deformation. Scr Mater. 2023;231: 115465.
- 31. Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagané. 1977;63(5):772-82.
- 32. Sohrabi MJ, Mirzadeh H, Dehghanian C. Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels. J Mater Eng Perform. 2020;29:3233-42.
- 33. Jabłońska MB, Kowalczyk K, Tkocz M, Chulist R, Rodak K, Bednarczyk I, Cichański A. The effect of severe plastic deformation on the IF steel properties, evolution of structure and crystallographic texture after dual-rolls equal channel extrusion deformation. Arch Civil Mech Eng. 2021;21:1-10.
- 34. Kowalczyk K, Jabłońska M, Rusz S, Junak G. Influence of recrystallization annealing on the properties and structure of low-carbon ferritic steel IF. Arch Metall Mater. 2018;63(4):1957-61.
- 35. Aashranth B, Davinci MA, Samantaray D, Borah U, Albert SK. A new critical point on the stress-strain curve: delineation of dynamic recrystallization from grain growth. Mater Des. 2017;116:495-503.
- 36. Malta PO, Alves DS, Ferreira AOV, Moutinho ID, Dias CAP, Santos DB. Static recrystallization kinetics and crystallographic texture of Nb-stabilized ferritic stainless steel based on orientation imaging microscopy. Metall Mater Trans A. 2017;48:1288-309.
- 37. Naghizadeh M, Mirzadeh H. Elucidating the efect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall Mater Trans A. 2016;47:5698-703.
- 38. VishnuKumar M, Muthupandi V, Jerome S. Microstructural characteristics, mechanical properties and corrosion performance of super austenitic stainless steel 904L produced by wire arc additive manufacturing. Mater Today Commun. 2023;35: 105801.
- 39. Mirzadeh H. Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review. Int. J Miner Metall Mater. 2023;30(7):1278-96.
- 40. Di Schino A, Salvatori I, Kenny JM. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J Mater Sci. 2002;37:4561-5.
- 41. Zeng L, Song X, Chen N, Rong Y, Zuo X, Min N. A new understanding of transformation induced plasticity (TRIP) effect in austenitic steels. Mater Sci Eng A. 2022;857: 143742.
- 42. Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15(4):141-68.
- 43. Li J, Fang C, Liu Y, Huang Z, Wang S, Mao Q, Li Y. Deformation mechanisms of 304L stainless steel with heterogeneous lamella structure. Mater Sci Eng, A. 2019;742:409-13.
- 44. Molnár D, Engberg G, Li W, Vitos L. Deformation properties of austenitic stainless steels with different stacking fault energies. Mater Sci Forum. 2019;941:190-7.
- 45. del Abra-Arzola JL, García-Rentería MA, Cruz-Hernández VL, García-Guerra J, Martínez-Landeros VH, Falcón-Franco LA, Curiel-López FF. Study of the effect of sigma phase precipitation on the sliding wear and corrosion behaviour of duplex stainless steel AISI 2205. Wear. 2018;400:43-51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-070900b4-16ae-4aad-b3ed-d299b6b8cca5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.