PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting Land Use and Land Cover Changes in the Malaprabha Right Bank Canal Command Area through Cellular Automata and Markov Chain Modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To formulate an effective growth management plan, it is imperative to comprehend the dynamic changes that transpire. This study focused on identifying such shifts spanning four decades, from 1990 to 2020, and utilized a GIS-integrated approach, employing cellular automata Markov chain model within TerrSet software for the MRBC area, to predict land use and land cover (LULC) for 2030. The accuracy evaluation of the classification method yielded overall accuracy percentages of 94.11%, 94.11%, 90.19%, and 94.12% for 1990, 2000, 2010, and 2020, respectively, accompanied by Kappa values of 0.921, 0.921, 0.895 and 0.922. The LULC map for 2020 was forecasted and compared to the actual map for validation, revealing a discrepancy of less than 5% in class distribution. The study findings indicated a 12.32% reduction in agricultural land (151.7 km2) compared to the 1990 LULC map in the projected 2030 map. In this future scenario, the converted region is allocated to urban and barren land classes. Consequently, decision-makers are urged to take necessary measures to preserve agricultural land from conversion, ensuring the enduring sustainability of agriculture.
Słowa kluczowe
Twórcy
  • Department of Civil Engineering, PG Centre, V.T.U, Belagavi, Karnataka, 590018, India
  • Department of Civil Engineering, PG Centre, V.T.U, Belagavi, Karnataka, 590018, India
  • Department of Civil Engineering, Atria Institute of Technology, Karnataka, 560024, India
Bibliografia
  • 1. Abbas, Z., Yang, G., Zhong, Y., Zhao, Y. 2021. Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China. Land. 10(6), 584.
  • 2. Araya, Y.H., Cabral, P. 2010.Analysis and Modeling of Urban Land Cover change in Setubal and Sesimbra, Portugal.Remote Sensing, 2, 1549–1563.
  • 3. Baker, W.L. 1989. A review of models of landscape change. Landscape Ecology, 2(2), 111–133.
  • 4. Behera, M.D, Borate, S.N, Panda, S.N, Behera, P.R, Roy, P.S. 2012. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)-Markov model—A geo-information based approach. Journal of Earth System Science, 121, 1011–1024.
  • 5. Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System—Manual. Available online: www.clarklabs.org (accessed on 2 January 2016).
  • 6. Gautam, N.C. and Narayanan, L.R.A. 1983. Landsat MSS Data for Land Use/Land Cover Inventory and Mapping: A Case Study of Andhra Pradesh. Journal of Indian Society of Remote Sensing, 11, 15–28.
  • 7. Geoghegan, J., Wainger, L.A. and Bocksael, N.E. 1997, Spatial landscape indices in a hedonic framework: An ecological economics analysis using GIS. Ecological Economics, 23, 251–264.
  • 8. Gong, P et al. 2013. Finer Resolution Observation and Monitoring of Global Land cover: First Mapping Results With Landsat TM and ETM + Data. International journal of remote sensing, 34(7), 2607–2654.
  • 9. Hall, D.K., Foster, J.L., Chien, J.Y.L. and Riggs, G.A. 1995, Determination of actual snow covered area using Landsat TM and digital elevation model data in Glacier National Park, Montana. Polar Record, 177(31), 191–198.
  • 10. Landis, J.R., Koch G.G. 1977. The measurement of observer agreement for categorical data, Biometrics, Mar, 33(1), 159–174.
  • 11. Keshtkar, H., Voigt, W. 2015. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model. Earth Syst. Environ. 2(1), 1–13.
  • 12. Lambin, E.F.1997. Modeling and Monitoring Landcover change processes in Tropical Regions. Progress in Physical Geography, 21, 375–393.
  • 13. Leta, M.K., Demissie, T.A., Tränckner, J. 2021. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability., 13(7), 3740. https://doi.org/10.3390/su13073740
  • 14. Li, S.H., Jin, B.X., Wei, X.Y., Jiang, Y.Y., Wang, J.L. 2015. Using CA-Markov model to model the spatiotemporal change of land use/cover in Fuxian Lake for decision support. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2, 163–168.
  • 15. Liverman, D., Moran E., Rindfuss R.R. and Stern P.C. 1998. People and Pixels: Linking Remote Sensing and Social Science (Washington, D.C.: National Academy Press). LongTerm Growth Prediction for San Francisco and Washington/Baltimore.
  • 16. Maduako, I. and Wang, J. 2017. Spatio-temporal Urban Growth Dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC Modeling and Prediction. European Journal of Remote Sensing. 51. https://doi.org/10.1080/22797254.2017.1419831
  • 17. Memarian, H., Kumar Balasundram, S., Bin Talib, J., Teh Boon Sung, C., Mohd Sood, A., Abbaspour, K. 2012. Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. Journal of Geographic Information System. 4, 542–554.
  • 18. Mertens, B. and Lambin, E.F. 1997. Spatial modeling of deforestation in Southern Cameroon. Applied Geography, 17(2), 143–162.
  • 19. Mishra, V.N., Rai, P.K. 2016. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences. 9, 1–18.
  • 20. Noszczyk T. 2018. A review of approaches to land use changes modeling. Human and Ecological Risk Assessment. 25(6), 1377–1405.
  • 21. Pontius Jr, R.G., Huffaker, D. and Denman, K. 2004, Useful techniques of validation for spatially explicit land-change models. Ecological Modeling, 179(4), 445–461.
  • 22. Pontius Jr, R.G. 2002, Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetric Engineering Remote Sensing, 68(10), 1041–1049.
  • 23. Mishra, P. K., Rai, A., Rai S.C. 2020. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 133–143.
  • 24. Risma, Zubair H. and Paharuddin. 2019. Prediction of land use and land cover (LULC) changes using CA-Markov model in Mamuju Subdistrict. Journal of Physics L Conference series 1341 082033.
  • 25. Sananda Kundu, Deepak Khare, Arun Mondal. 2017. Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP), Ecological Informatics, 42, 100–113.
  • 26. Serra, P., Pons, X., Saurí, D. 2008. Land-cover and landuse change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Applied Geography, 28(3), 189–209.
  • 27. Sitthi, A., Nagai, M., Dailey, M., Ninsawat, S. 2016. Exploring land use and land cover of geotagged social-sensing images using Naive Bayes Classifier. Sustainability, 8, 921.
  • 28. Tong S.T.Y., Sun Y., Yang Y.J. 2012. Generating a future land-use change scenario: A case study of the Little Miami River Watershed, Ohio. Journal of Environmental Informatics. 19, 108–119.
  • 29. Turner II, B.L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., Leemans, R. 1995. Land-Use and Land-Cover Change, Science/Research Plan. IGBP Report No.35/HDP Report No.7, Stockholm, Sweden, and Geneva, Switzerland.
  • 30. Veldkamp, T.A. and Fresco I.O. 1996b. CLUE-CR: an integrated multi-scale model tosimulate land use change scenarios in Costa Rica. Ecological Modeling, 91(1–3), 231–248.
  • 31. Wang, S.Q., Zheng, X.Q., Zang, X.B. 2012. Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environ. Sci. 13, 1238–1245. https://doi.org/doi:10.1016/j.proenv.2012.01.117
  • 32. Wilkie, D.S., and Finn, J.T. 1988. A Spatial Model Of Land Use and Forest Regeneration In The Ituri Forest of North Eastern Zaire. Ecological Modelling, 41, 307–323.
  • 33. Zadbagher, E., Becek, K., Berberoglu, S. 2018. Modeling land use/land cover change using remote sensing and geographic information systems: Case study of the Seyhan Basin, Turkey. Environmental Monitoring Assessment. 190, 1–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0706cc98-21fe-4d29-b14e-389adb6b1166
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.