PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Broń chemiczna w XX i XXI wieku. Cz. 3, Fosforoorganiczne bojowe środki trujące stosowane do 1970 r. : grupa V

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chemical weapon in the 20th and 21st centuries. Part 3, Organophosphorus chemical warfare agents used until the year 1970 : V-group
Języki publikacji
PL
Abstrakty
PL
W pracy opisano grupę V fosforoorganicznych bojowych środków trujących (BST) o działaniu paralityczno-drgawkowym stosowanych od ich odkrycia do 1970 roku. Grupa V jest drugim z kolei zbiorem BST i zawiera wiele substancji chemicznych, które do 2018 roku były uważane za najbardziej toksyczne związki chemiczne wchodzące w skład arsenału broni chemicznej.
EN
The article contains the knowledge about the V-group of organophosphorus chemical warfare agents, named nerve agents, used since their discovery until the year 1970. Group V is the second consecutive collection of CW agents and it contains a number of chemical substances, which were considered up to the year 2018, to be the most toxic chemical compounds included in the arsenal of chemical weapons.
Rocznik
Strony
139--163
Opis fizyczny
Bibliogr. 138 poz.
Twórcy
  • Dowództwo Generalne Rodzajów Sił Zbrojnych, ul. Żwirki i Wigury 103/105, 00-912 Warszawa
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Instytut Chemii, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] Mirzayanov V.S., State Secrets, Outskirts Press, 2009.
  • [2] Matar H. et al., Further studies of the efficacy of military, commercial and novel skin decontaminants against the chemical warfare agents sulphur mustard, soman and VX, Toxicol in Vitro, vol. 54, 2019, pp. 263-268.
  • [3] Smith M.E., Swoboda H.D., V­Series (Ve, Vg, Vm, Vx) Toxicity, [in:] StatPearls, Treasure Island (FL): StatPearls Publishing, 2018.
  • [4] Chao C.K. et al., The inhibition, reactivation and mechanism of VX­, sarin­, fluoro­VX and fluoro­sarin surrogates following their interaction with HuAChE and HuBuChE, Chem Biol Interact, vol. 291, 2018, pp. 220-227.
  • [5] Reymond C. et al., Superior efficacy of HI­6 dimethanesulfonate over pralidoxime methylsulfate against Russian VX poisoning in cynomolgus monkeys (Macaca fascicularis), Toxicology, vol. 410, 2018, pp. 96-105.
  • [6] Bester S.M. et al., Structural insights of stereospecific inhibition of human acetylcholinesterase by VX and subsequent reactivation by HI­6, Chem Res Toxicol, 2018.
  • [7] Lee J.Y. et al., Simultaneous Time­concentration Analysis of Soman and VX Adducts to Butyrylcholinesterase and Albumin by LC­MS­MS, J Anal Toxicol, vol. 42, no. 5, 2018, pp. 293-299.
  • [8] Williams A.M. et al., Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC­MS and LC­MS, Talanta, vol. 186, 2018, pp. 607-614.
  • [9] Jansson D. et al., Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography­mass spectrometry, Talanta, vol. 186, 2018, pp. 597-606.
  • [10] Holmgren K.H. et al., Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures, Talanta, vol. 186, 2018, pp. 586-596.
  • [11] Dalton C. et al., Effect of aqueous dilution on the absorption of the nerve agent VX through skin in vitro, Toxicol In Vitro, vol. 53, 2018, pp. 121-125.
  • [12] Bloch-Shilderman E.et al., Determining a threshold sub­acute dose leading to minimal physiological alterations following prolonged exposure to the nerve agent VX in rats, Arch Toxicol, vol. 92, no. 2, 2018, pp. 873-892.
  • [13] de Castro A.A. et al., Asymmetric biodegradation of the nerve agents Sarin and VX by human dUTPase: Chemometrics, Molecular Docking and Hybrid QM/MM calculations, J Biomol Struct Dyn, 2018, pp. 1-35.
  • [14] Greathouse B., Brady M.F., “Acetylcholinesterase Inhibitors (Sarin, Soman, VX) Toxicity,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2018.
  • [15] Joosen M.J. et al., The impact of skin decontamination on the time window for effective treatment of percutaneous VX exposure, Chem Biol Interact, vol. 267, 2017, pp. 48-56.
  • [16] Thors L. et al., RSDL decontamination of human skin contaminated with the nerve agent VX, Toxicol Lett, vol. 269, 2017, pp. 47-54.
  • [17] Wille T. et al., Pseudocatalytic scavenging of the nerve agent VX with human blood components and the oximes obidoxime and HI­6, Arch Toxicol, vol. 91, no. 3, 2017, pp. 1309-1318.
  • [18] de Koning M.C., van Grol M., Breijaert T., Degradation of Paraoxon and the Chemical Warfare Agents VX, Tabun, and Soman by the Metal­Organic Frameworks UiO­66­NH2, MOF808, NU­1000, and PCN­777, Inorganic Chemistry, Inorg. Chem., 56, 19, 2017, 11804-11809.
  • [19] de Koning M.C., Peterson G.W., van Grol M., Iordanov I., McEntee M., Degradation and Detection of the Nerve Agent VX by a Chromophore­Functionalized Zirconium MOF, Chemistry of Materials, Chem. Mater., 31, 18, 2019, 7417-7424.
  • [20] Sellik A. et al., Degradation of paraoxon (VX chemical agent simulant) and bacteria by magnesium oxide depends on the crystalline structure of magnesium oxide, Chem Biol Interact, vol. 267, 2017, pp. 67-73.
  • [21] Calas A.G. et al., An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: Application to the efficacy assessment of non-quaternary reactivators compared to HI­6 and pralidoxime in VX­poisoned mice, Chem Biol Interact, vol. 267, 2017, pp. 11-16.
  • [22] Carmany D. et al., Activity Based Protein Profiling Leads to Identification of Novel Protein Targets for Nerve Agent VX, Chem Res Toxicol, vol. 30, no. 4, 2017, pp. 1076-1084.
  • [23] Zetterberg C. et al., VX­509 (Decernotinib)­Mediated CYP3A Time­Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug­Drug Interactions, Drug Metab Dispos, vol. 44, no. 8, 2016, pp. 1286-1295.
  • [24] Langston J.L. and T.M. Myers, VX toxicity in the Göttingen minipig, Toxicol Lett, vol. 264, 2016, pp. 12-19.
  • [25] Wille T. et al., Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection, Toxicol Lett, vol. 258, 2016, pp. 198-206.
  • [26] Weimer I. et al., Self­regeneration of neuromuscular function following soman and VX poisoning in spinal cord­skeletal muscle cocultures, Toxicol Lett, vol. 244, 2016, pp. 149-153.
  • [27] Smith C.D. et al., Repeated low­dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs, Neurotoxicol Teratol, vol. 54, 2016, pp. 36-45.
  • [28] Chambers J.E. et al., Novel brain­penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates, Ann N Y Acad Sci, vol. 1374, no. 1, 2016, pp. 52-58.
  • [29] Seidensticker M. et al., Modified transarterial chemoembolization with locoregional administration of sorafenib for treating hepatocellular carcinoma: feasibility, efficacy, and safety in the VX­2 rabbit liver tumor model, Diagn Interv Radiol, vol. 22, no. 4, 2016, pp. 378-384.
  • [30] Maček Hrvat N. et al., HI­6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants, Chem Biol Interact, vol. 259, no. Pt B, 2016, pp. 148-153.
  • [31] Cuquel A.C. et al., [The VR, the Russian version of the nerve agent VX], Ann Pharm Fr, vol. 73, no. 3, 2015, pp. 180-189.
  • [32] Rice H. et al., Toxicity and medical countermeasure studies on the organophosphorus nerve agents VM and VX, Proc Math Phys Eng Sci, vol. 471, no. 2176, 2015, pp. 20140891.
  • [33] Josse D. et al., Showering effectiveness for human hair decontamination of the nerve agent VX, Chem Biol Interact, vol. 232, 2015, pp. 94-100.
  • [34] Nirujogi R.S. et al., Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats, Proteomics, vol. 15, no. 2-3, 2015, pp. 487-499.
  • [35] Bajgar J. et al., Natural Detoxification Capacity to Inactivate Nerve Agents Sarin and VX in the Rat Blood, Acta Medica (Hradec Kralove), vol. 58, no. 4, 2015, pp. 128-130.
  • [36] Daczkowski C.M. et al., Engineering the Organophosphorus Acid Anhydrolase Enzyme for Increased Catalytic Efficiency and Broadened Stereospecificity on Russian VX, Biochemistry, vol. 54, no. 41, 2015, pp. 6423-6433.
  • [37] Gon Ryu S., Wan Lee H., Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface, J Environ Sci Health A Tox Hazard Subst Environ Eng, vol. 50, no. 14, 2015, pp. 1417-1427.
  • [38] Worek F. et al., Post­exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: a proof­of­concept study, Toxicol Lett, vol. 231, no. 1, 2014, pp. 45-54.
  • [39] Zhang L. et al., Hepatic arterial administration of sorafenib and iodized oil effectively attenuates tumor growth and intrahepatic metastasis in rabbit VX2 hepatocellular carcinoma model, Int J Clin Exp Pathol, vol. 7, no. 11, 2014, pp. 7775-7781.
  • [40] Graziani S. et al., Effects of repeated low­dose exposure of the nerve agent VX on monoamine levels in different brain structures in mice, Neurochem Res, vol. 39, no. 5, 2014, pp. 911-921.
  • [41] Kanjilal B. et al., Differentiated NSC­34 cells as an in vitro cell model for VX, Toxicol Mech Methods, vol. 24, no. 7, 2014, pp. 488-494.
  • [42] Jossé R. et al., ATR inhibitors VE­821 and VX­970 sensitize cancer cells to topoisomerase in inhibitors by disabling DNA replication initiation and fork elongation responses, Cancer Res, vol. 74, no. 23, 2014, pp. 6968-6979.
  • [43] Peng X. et al., Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats, Inhal Toxicol, vol. 26, no. 7, 2014, pp. 371-379.
  • [44] Gao X. et al., Toxicogenomic studies of human neural cells following exposure to organophosphorus chemical warfare nerve agent VX, Neurochem Res, vol. 38, no. 5, 2013, pp. 916-934.
  • [45] Misík J. et al., Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents, Arh Hig Rada Toksikol, vol. 64, no. 2, 2013, pp. 25-31.
  • [46] Bigley A.N. et al., Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis, J Am Chem Soc, vol. 135, no. 28, 2013, pp. 10426-10432.
  • [47] Georgoulias V. et al., A multicenter randomized phase IIb efficacy study of Vx­001, a peptide­based cancer vaccine as maintenance treatment in advanced non­small­cell lung cancer: treatment rationale and protocol dynamics, Clin Lung Cancer, vol. 14, no. 4, 2013, pp. 461-465.
  • [48] Kassa J. et al., A comparison of the reactivating efficacy of a novel bispyridinium oxime K203 with currently available oximes in VX agent­poisoned rats, J Enzyme Inhib Med Chem, vol. 28, no. 4, 2013, pp. 753-757.
  • [49] Zabrodskiĭ P.F., Grishin V.A., [Pharmacological correction of nonspecific resistance and production of proinflammatory cytokines during chronic intoxication with organophosphorus compound VX], Eksp Klin Farmakol, vol. 75, no. 11, 2012, pp. 19-21.
  • [50] Pizarro J.M. et al., Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain, Toxicol Sci, vol. 126, no. 2, 2012, pp. 497-505.
  • [51] Prokofieva D.S. et al., Microplate biochemical determination of Russian VX: influence of admixtures and avoidance of false negative results, Anal Biochem, vol. 424, no. 2, 2012, pp. 108-113.
  • [52] Clarkson E.D. et al., Median lethal dose determination for percutaneous exposure to soman and VX in guinea pigs and the effectiveness of decontamination with M291 SDK or SANDIA foam, Toxicol Lett, vol. 212, no. 3, 2012, pp. 282-287.
  • [53] Khan M.A., Ganguly B., Assessing the reactivation efficacy of hydroxylamine anion towards VX­inhibited AChE: a computational study, J Mol Model, vol. 18, no. 5, 2012, pp. 1801-1808.
  • [54] Shih T.M. et al., The oxime pro­2­PAM provides minimal protection against the CNS effects of the nerve agents sarin, cyclosarin, and VX in guinea pigs, Toxicol Mech Methods, vol. 21, no. 1, 2011, pp. 53-62.
  • [55] Reiter G. et al., Simultaneous quantification of VX and its toxic metabolite in blood and plasma samples and its application for in vivo and in vitro toxicological studies, J Chromatogr B Analyt Technol Biomed Life Sci, vol. 879, no. 26, 2011, pp. 2704-2713.
  • [56] Saxena A. et al., Prophylaxis with human serum butyrylcholinesterase protects guinea pigs exposed to multiple lethal doses of soman or VX, Biochem Pharmacol, vol. 81, no. 1, 2011, pp. 164-169.
  • [57] Mumford H., Troyer J.K., Post­exposure therapy with recombinant human BuChE following percutaneous VX challenge in guinea­pigs, Toxicol Lett, vol. 206, no. 1, 2011, pp. 29-34.
  • [58] O’Donnell J.C. et al., In vivo microdialysis and electroencephalographic activity in freely moving guinea pigs exposed to organophosphorus nerve agents sarin and VX: analysis of acetylcholine and glutamate, Arch Toxicol, vol. 85, no. 12, 2011, pp. 1607-1616.
  • [59] Mikler J. et al., Immobilization of Russian VX skin depots by localized cooling: implications for decontamination and medical countermeasures, Toxicol Lett, vol. 206, no. 1, 2011, pp. 47-53.
  • [60] Braue E.H. et al., Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX, Cutan Ocul Toxicol, vol. 30, no. 1, 2011, pp. 15-28.
  • [61] Genovese R.F. et al., Determination of threshold adverse effect doses of percutaneous VX exposure in African green monkeys, Toxicology, vol. 279, no. 1-3, 2011, pp. 65-72.
  • [62] Taysse L. et al., Cutaneous challenge with chemical warfare agents in the SKH­1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller’s earth) against liquid sulphur mustard and VX exposure, Hum Exp Toxicol, vol. 30, no. 6, 2011, pp. 491-498.
  • [63] Yu H. et al., Arterial embolization hyperthermia using As2O3 nanoparticles in VX2 carcinoma­induced liver tumors, PLoS One, vol. 6, no. 3, 2011, pp. e17926.
  • [64] Kassa J. et al., A comparison of the reactivating and therapeutic efficacy of chosen combinations of oximes with individual oximes against VX in rats and mice, Int J Toxicol, vol. 30, no. 5, 2011, pp. 562-567.
  • [65] Genovese R.F. et al., Safety of administration of human butyrylcholinesterase and its conjugates with soman or VX in rats, Basic Clin Pharmacol Toxicol, vol. 106, no. 5, 2010, pp. 428-434.
  • [66] Joosen M.J. et al., Percutaneous exposure to the nerve agent VX: Efficacy of combined atropine, obidoxime and diazepam treatment, Chem Biol Interact, vol. 188, no. 1, 2010, pp. 255-263.
  • [67] Lenz D.E. et al., Butyrylcholinesterase as a therapeutic drug for protection against percutaneous VX, Chem Biol Interact, vol. 187, no. 1-3, 2010, pp. 249-252.
  • [68] Karasova J.Z. et al., Time­course changes of acetylcholinesterase activity in blood and some tissues in rats after intoxication by Russian VX., Neurotox Res, vol. 16, no. 4, 2009, pp. 356-360.
  • [69] McAnoy A.M. et al., Ion­molecule reactions of O,S­dimethyl methylphosphonothioate: evidence for intramolecular sulfur oxidation during VX perhydrolysis, J Org Chem, vol. 74, no. 24, 2009, pp. 9319-9327.
  • [70] Millerioux J. et al., In vitro selection and efficacy of topical skin protectants against the nerve agent VX, Toxicol In Vitro, vol. 23, no. 3, 2009, pp. 539-545.
  • [71] Hajek P. et al., Different inhibition of acetylcholinesterase in selected parts of the rat brain following intoxication with VX and Russian VX, Drug Chem Toxicol, vol. 32, no. 1, 2009, pp. 1-8.
  • [72] Bloch-Shilderman E. et al., Subchronic exposure to low­doses of the nerve agent VX: physiological, behavioral, histopathological and neurochemical studies, Toxicol Appl Pharmacol, vol. 231, no. 1, 2008, pp. 17-23.
  • [73] Wang Y. et al., Protective effects of N­methyl­D­aspartate receptor antagonism on VX­induced neuronal cell death in cultured rat cortical neurons, Neurotox Res, vol. 13, no. 3-4, 2008, pp. 163-172.
  • [74] Bajgar J., Protective effect of reversible cholinesterase inhibitors (tacrine, pyridostigmine) and eqbuche against VX poisoning and brain acetylcholinesterase inhibition in rats, Acta Medica (Hradec Kralove), vol. 51, no. 4, 2008, pp. 223-228.
  • [75] Joosen M.J. et al., Percutaneous exposure to VX: clinical signs, effects on brain acetylcholine levels and EEG, Neurochem Res, vol. 33, no. 2, 2008, pp. 308-317.
  • [76] Fiskus W. et al., Cotreatment with vorinostat enhances activity of MK­0457 (VX­680) against acute and chronic myelogenous leukemia cells, Clin Cancer Res, vol. 14, no. 19, 2008, pp. 6106-6115.
  • [77] Bjarnason S. et al., Comparison of selected skin decontaminant products and regimens against VX in domestic swine, Hum Exp Toxicol, vol. 27, no. 3, 2008, pp. 253-261.
  • [78] Dorandeu F. et al., An unexpected plasma cholinesterase activity rebound after challenge with a high dose of the nerve agent VX, Toxicology, vol. 248, no. 2-3, 2008, pp. 151-157.
  • [79] Rocksén D. et al., An animal model to study health effects during continuous low­dose exposure to the nerve agent VX, Toxicology, vol. 250, no. 1, 2008, pp. 32-38.
  • [80] Molochkina E.I. et al., [Stability of bituminous­salt mass­washing sarin, soman, and Russian VX destruction products in the aquatic environment and their effects of the sanitary conditions of water supplies], Gig Sanit, no. 4, 2007, pp. 31-34.
  • [81] Bajgar J. et al., Inhibition of blood cholinesterases following intoxication with VX and its derivatives, J Appl Toxicol, vol. 27, no. 5, 2007, pp. 458-463.
  • [82] Musílek K. et al., Evaluation of potency of known oximes (pralidoxime, trimedoxime, HI­6, methoxime, obidoxime) to in vitro reactivate acetylcholinesterase inhibited by pesticides (chlorpyrifos and methylchlorpyrifos) and nerve agent (Russian VX), Acta Medica (Hradec Kralove), vol. 50, no. 3, 2007, pp. 203-206.
  • [83] Musílek K. et al., Evaluation of Potency of Known Oximes (Pralidoxime, Trimedoxime, HI­6, Methoxime, Obidoxime) to in vitro Reactivate Acetylcholinesterase Inhibited by Pesticides (Chlorpyrifos and Methylchlorpyrifos and Nerve Agent (Russian VX), Acta Medica (Hradec Kralove), vol. 50, no. 3, 2007, pp. 203-206.
  • [84] Katos A.M. et al., Abdominal bloating and irritable bowel syndrome like symptoms following microinstillation inhalation exposure to chemical warfare nerve agent VX in guinea pigs, Toxicol Ind Health, vol. 23, no. 4, 2007, pp. 231-240.
  • [85] Kassa J. et al., The reactivating and therapeutic efficacy of oximes to counteract Russian VX poisonings, Int J Toxicol, vol. 25, no. 5, 2006, pp. 397-401.
  • [86] Kuca K. et al., Russian VX: inhibition and reactivation of acetylcholinesterase compared with VX agent, Basic Clin Pharmacol Toxicol, vol. 98, no. 4, 2006, pp. 389-394.
  • [87] Bandyopadhyay I. et al., Favorable pendant­amino metal chelation in VX nerve agent model systems, J Phys Chem A, vol. 110, no. 10, 2006, pp. 3655-3661.
  • [88] Bartling A. et al., Effect of metoclopramide and ranitidine on the inhibition of human AChE by VX in vitro, J Appl Toxicol, vol. 25, no. 6, 2005, pp. 568-571.
  • [89] Barr J.R. et al., Quantitation of metabolites of the nerve agents sarin, soman, cyclohexylsarin, VX, and Russian VX in human urine using isotope­dilution gas chromatography­tandem mass spectrometry, J Anal Toxicol, vol. 28, no. 5, 2004, pp. 372-378.
  • [90] Duysen E.G. et al., Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality, J Pharmacol Exp Ther, vol. 299, no. 2, 2001, pp. 528-535.
  • [91] Crenshaw M.D. et al., Comparison of the hydrolytic stability of S­(N,N­diethylaminoethyl) isobutyl methylphosphonothiolate with VX in dilute solution, J Appl Toxicol, vol. 21 Suppl 1, 2001, pp. S3-6.
  • [92] Wester R.M. et al., Predicted chemical warfare agent VX toxicity to uniformed soldier using parathion in vitro human skin exposure and absorption, Toxicol Appl Pharmacol, vol. 168, no. 2, 2000, pp. 149-152.
  • [93] Gur’eva L.M. et al., [Chronic poisoning by organophosphoric VX], Med Tr Prom Ekol, no. 6, 1997, pp. 7-11.
  • [94] Rastogi V.K. et al., Enzymatic hydrolysis of Russian­VX by organophosphorus hydrolase, Biochem Biophys Res Commun, vol. 241, no. 2, 1997, pp. 294-296.
  • [95] Ci Y.X. et al., Production, characterization and application of monoclonal antibodies against the organophosphorus nerve agent Vx, Arch Toxicol, vol. 69, no. 8, 1995, pp. 565-567.
  • [96] Munro N., Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: implications for public protection, Environ Health Perspect, vol. 102, no. 1, 1994, pp. 18-38.
  • [97] Koplovitz I., “A comparison of the efficacy of HI6 and 2­PAM against soman, tabun, sarin, and VX in the rabbit”, Aberdeen Proving Ground Md: U.S. Army Medical Research Institute of Chemical Defense, 1992.
  • [98] Tammelin L., Forskningsanstalt. F.O.A., “B­stridsmedel”, Stockholm: Liber Förlag, 1985.
  • [99] Tammelin L.-E., Syntheses of p­Dimethylaminobenzyl Alcohol and Esters of its Methiodide, Acta Chemica Scandinavica, vol. 10, 1956, pp. 1276-1278.
  • [100] Tammelin L.-E., “Choline esters”, Stockholm 1958.
  • [101] Adeyinka A., Kondamudi N.P., “Cholinergic Crisis,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2018.
  • [102] Anderson P.D., Emergency management of chemical weapons injuries, J Pharm Pract, vol. 25, no. 1, 2012, pp. 61-68.
  • [103] Cashman J.R., “Emergency Response to Chemical and Biological Agents”, CRC Press, 2002.
  • [104] Defense U.S.O.O.C., “Identification of Chemical Warfare Agents (Classic Reprint)”, Forgotten Books, 2018.
  • [105] Giannakoudakis D.A., Bandosz T.J., “Detoxification of Chemical Warfare Agents”, Springer, 2017.
  • [106] Hrobak P.K., Nerve agents: implications for anesthesia providers, AANA J, vol. 76, no. 2, 2008, pp. 95-97.
  • [107] Marrs T.T. et al., “Chemical Warfare Agents”, John Wiley & Sons, 2007.
  • [108] Hoenig S.L., “Compendium of Chemical Warfare Agents”, Springer Science & Business Media, 2006.
  • [109] Gupta R.C., “Handbook of Toxicology of Chemical Warfare Agents”, Academic Press, 2015.
  • [110] Ellison D.H., “Handbook of Chemical and Biological Warfare Agents, Second Edition”, CRC Press, 2007.
  • [111] Witkiewicz Z., “1000 słów o chemii i broni chemicznej”, praca zbiorowa, Warszawa, Wydawnictwo Ministerstwa Obrony Narodowej, 1987.
  • [112] Szczucki E., “Chemia środków trujących: [skrypt]. Cz. 3, Chemia toksykologiczna”, Warszawa, Wojskowa Akademia Techniczna, 1973.
  • [113] Grochowski J., “Chemia środków trujących”, Warszawa, Wojskowa Akademia Techniczna, 1973.
  • [114] Konopski L., “Historia broni chemicznej”, Warszawa, Bellona, 2009.
  • [115] Van K., Effects of nerve gas poisoning in sheep in Skull Valley, Utah, Journal of the American Veterinary Medical Association, vol. 156, no. 8, 1970, pp. 1032-1035.
  • [116] Chao L.L. et al., Effects of low­level sarin and cyclosarin exposure and Gulf War Illness on brain structure and function: a study at 4T, Neurotoxicology, vol. 32, no. 6, 2011, pp. 814-822.
  • [117] Lukey B.J. et al., “Chemical Warfare Agents”, CRC Press, 2000.
  • [118] Croddy E. and Perez-Armendariz C., “Chemical and Biological Warfare”, Springer Science & Business Media, 2002.
  • [119] Ellison D., “Emergency action for chemical and biological warfare agents”, 2016.
  • [120] Witkiewicz Z., Paturej K., Konwencja o zakazie broni chemicznej, Przemysł Chemiczny, 3, 1994.
  • [121] States. U.S.S.S., “Potential military chemical”, [Washington D.C.]: [Dept. of the Army], 2005.
  • [122] Ledgard J., “The laboratory history of chemical warfare agents”, 2nd ed. [South Bend IN]: [Paranoid Publications Group], 2006.
  • [123] Ledgard J., “The preparatory manual of chemical warfare agents”, 3rd ed. [S.l.]: J.B. Ledgard, 2012.
  • [124] Van K., Organic phosphate poisoning of sheep in Skull Valley, Utah, Journal of the American Veterinary Medical Association, vol. 154, no. 6, 1969, pp. 623-630.
  • [125] Grochowski J.W., “Bojowe środki trujące: zarys chemii i technologii”, Warszawa: Wydawnictwo Ministerstwa Obrony Narodowej, 1960.
  • [126] LEDGARD J.A.R.E.D., “Preparatory manual of chemical warfare agents third edition”, [Place of publication not identified]: UVKCHEM, 2012.
  • [127] Buda S., “Chemia procesów odkażania: [skrypt]”, Warszawa: Wojskowa Akademia Techniczna, 1981.
  • [128] Chao L.L. et al., Effects of low­level exposure to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US veterans, Neurotoxicology, vol. 31, no. 5, 2010, pp. 493-501.
  • [129] Augerson W., “A Review of the Scientific Literature as it Pertains to Gulf War Illnesses. Volume 5. Chemical and Biological Warfare Agents”, [United States]: Rand Corp Santa Monica ca, 2000.
  • [130] Chao L.L. et al., Effects of low­level sarin and cyclosarin exposure on hippocampal subfields in Gulf War Veterans, Neurotoxicology, vol. 44, 2014, pp. 263-269.
  • [131] Golomb B.A. et al., “A Review of the Scientific Literature as it Pertains to Gulf War Illnesses: Chemical and biological warfare agents”, Minnesota Historical Society, 1998.
  • [132] Heaton K.J. et al., Quantitative magnetic resonance brain imaging in US army veterans of the 1991 Gulf War potentially exposed to sarin and cyclosarin, Neurotoxicology, vol. 28, no. 4, 2007, pp. 761-769.
  • [133] Kerr K.J., Gulf War illness: an overview of events, most prevalent health outcomes, exposures, and clues as to pathogenesis, Rev Environ Health, vol. 30, no. 4, 2015, pp. 273-286.
  • [134] O’Callaghan J.P. et al., Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness, J Neurochem, vol. 133, no. 5, 2015, pp. 708-721.
  • [135] Phillips K.F., Deshpande L.S., Repeated low­dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness, Neurotoxicology, vol. 52, 2016, pp. 127-133.
  • [136] Pope C. et al., Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action, Environ Toxicol Pharmacol, vol. 19, no. 3, 2005, pp. 433-446.
  • [137] Proctor S.P. et al., Effects of sarin and cyclosarin exposure during the 1991 Gulf War on neurobehavioral functioning in US army veterans, Neurotoxicology, vol. 27, no. 6, 2006, pp. 931-939.
  • [138] Rao A.N. et al., Pharmacologically increasing microtubule acetylation corrects stress­exacerbated effects of organophosphates on neurons, Traffic, vol. 18, no. 7, 2017, pp. 433-441.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0705ca89-2d64-4824-aacb-6c3135da3f01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.