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Abstract

Over ninety percent of End Stage Renal Disease (ESRD) patients suffer from
anemia due to insufficient endogenous production of human erythropoietin. Until
the advent of Recombinant Human Erythropoietin (r-HUEPQ) over 30 years ago,
patients with ESRD were treated mainly with multiple blood transfusions. The
high cost of r-HUEPO in addition to the narrow margin between an effective do-
sage and toxicity in drug administration calls for optimal dosage strategy capable
of minimizing cost and toxicity while at the same time achieving the desired do-
sage outcome. It is well known from control theory that a controller can be de-
signed for any plant provided there is readily available a valid model for such a
plant. We present Robust Identification procedure, a dimensionality reduction
technique capable of capturing the inherent dynamics of anemia patients; conse-
quently producing individualized model suitable for robust control synthesis and
any other controller design methodologies.
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1 Introduction

Recombinant Human Erythropoietin (r-HUEPO) is currently the drug of
choice for the treatment of patients with secondary anemia due to Chronic
Kidney Disease (CKD) in periodic hemodialysis [11]. Prior to the mid 1980s,
patients suffering from CKD were primarily treated by regular blood transfu-
sions. The cumbersome process of blood transfusion and other health related
complications associated with it called for an alternative method to ERSD
therapy. By 1990, recombinant human erythropoietin (EPO) was developed
and approved for such a purpose. The National Kidney Foundation-Kidney
Disease Outcomes Quality Initiative (NKF-KDOQI) has a recommended
guideline to maintain hemoglobin level for anemics to be between 11 and 12
g/dL; however, there is no definitive strategy to achieve this range. As a re-
sult, several anemia management facilities developed their own Anemia Man-
agement Protocol (AMP), a dosing strategy often based on trial-and-error and
prior experience. This approach often results to patient’s hemoglobin level
overshooting and undershooting the target range. In fact, it has been reported
that only 38% of ESRD patients fall within the recommended range at a given
time with AMP dosage strategy [6]. The high cost of EPO in addition to the
narrow margin between an effective dosage and toxicity demands an optimal
dosage strategy for ESRD therapy. In an effort to improve on the AMP, sev-
eral attempts are made in the literature to stabilize erythropoiesis for ESRD
patient ranging from a detailed physiological model to a simple black-box
model (cf.[12], [14], [15], [2], [5], [1]. [3], etc). Most of these approaches
work well however, the obtained models are based on a use of large patient
dataset. In cases where there was not sufficiently large dataset available, aver-
age population data were subsequently used. It is however well known that
intra-individual variability makes it inappropriate to administer an "average"
dosage to a patient and expect and "average" response. Thus none of these
modeling procedures can be performed with small available patient dataset.
Additionally, an assumption made is that the model obtained accurately
represents the true system and there is no account for uncertainty in the mod-
el. Any discrepancy between system out and model output are attributed to
noise in measurement. In Robust Control, we are interested in designing a
controller to achieve certain design objectives provided we have available a
nominal model as well as an uncertainty in the system that explains dynamics
un-modeled by the nominal model of the system. By robust we imply a small
change in input of the system should result to small change in the output of
the system. For the case of individualized anemia management, this implies a
small change in EPO dose should result in small change in hemoglobin level.
This prevents an issue often encounter in drug dosing —thus small change in
dosing strategy leading to huge change in patient response [3].
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Figure 1. Robust Controller structure: Nominal and additive uncertainty.

The structure shown in figure 1 is a generic description of an additive un-
certain Robust system model. In addition to the input-output, (u(t), y(t)), it
also contains a nominal model P, as well as a additive unmodelled dynamic,
A. The general equation representing the system is depicted in equation (1).
Our main focus of this work is to obtain a nominal model, Py, as well all the
uncertainty bound A measured in l;-norm suitable for robust control synthe-
sis.

P(s) =P+ A (1)

In the modeling process, our assumption on the system is very minimal. It
is assumed the system to be identified is a Linear Time Invariant (LTI) causal
stable system belonging to a model class S with a maximum gain K, and a
decay rate p. It is further assumed that measurements of the system is affected
by an unknown-but-bounded noise € belonging to a set N. The a posteriori
information includes the obtained input-output dataset of our system. The goal
of robust identification is to obtain both the nominal model as well as the un-
certainty model using both the a priori (S;K;p;N) and a posteriori (input-
output data). The derived model is in the framework suitable for robust con-
trol synthesis method in I;. Our interest is to formulate and model individua-
lized anemia management problem suitable for robust control.

The paper is organized as followed: in section Il, we present some neces-
sary notations. In section I1l we provide brief overview on Robust Identifica-
tion, particularly on I, identification. Section IV presents the anemia manage-
ment problem and provides a robust identification approach to the problem we
present Anemia Management problem. We present the results in V. The paper
ends with conclusion and future work in section V1.

2 Notation

The following notations are used in the paper. Let H., denote space
of complex functions with bounded analytic inside the unit disk, equipped
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with the norm [|G(2)||xc £ ess sup a(G(z)). We are also interested in
|z|<1

space M, of transfer matrices in H, analytic continuous inside the disk

with a radius p > 1, i.e., we are interested in the space of exponentially

stable systems with a stability margin of (p — 1) equipped with the norm

|G(2)]le £ sup (G(z)). Let £1 denote space of absolutely summable

\z|<1
sequences h = {h;} equipped with the norm ||h[|;, = 3°°° |hi| < co. Also
of interest is the £, space of bounded sequences h = {h; } equipped with the
norm ||h||[fs £ sup |hi| < oo. Given a sequence h € £y, its z-transform is
i>0 ‘
defined as H(z)' = > hiz'. For an LTI system, an operator G mapping
input data to an output data can be represented either as a (rational) complex-

valued transfer function:
G(z)= Z g

or as a minimal state-space realization:

o= (245)

In addition, for stable system G, we denote T : £[0,0c) — £7°[0, 00)
the Toeplitz matrix. An operator mapping input sequence, w to and output
sequence y is represented as:

Yo g9 0 - 0 up
Y1 B g1 g0 -+ 0 uy
: B : 0
YN—-1 gn-1 " g1 9o UN-1
T

3 Robust Identification

A. Introduction

The importance of obtaining mathematical model from finite, partial, and
corrupt system can be witness in various fields ranging from a simple eco-
nomic system to a complex one such as physiological systems. Generally,
certain informations are readily available or known or assumed on the dy-
namics nature of the system under consideration. For example, the designer

'Notice that this is the standard z-transform evaluated at 1/z. This adoption allows us to

define stability in terms of analyticity on a disk (rather than the complement of a disk) while
at the same time leaving the unit circle invariant [8]
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might assume the system to be of a certain model order, obey certain noise
characteristics affecting system measurements, input range, etc. This avail-
able knowledge is known as the system a priori information. The a posteriori
information is referred to the measurement data obtained from the system.
Two basic paradigms are available in the literature for deriving such a
mathematical model: stochastic and deterministic approach. In the stochastic
settings, the assumed a priori system information includes a predetermined
system model order and a stochastic noise with known statistical properties
affecting measurement outputs. The performance measure is usually deter-
mined based on least square error.

Assumptions on error in measurement should be the least of a concern to a
designer. The notion that a complex system can be modeled with a prescribed
model structure is unrealistic. For most systems, there is readily available
sensor measurement noise bound and when such information is available
and statistical assumptions maybe questionable, a deterministic approach to
deriving a model is the sound alternative.

B. Robust Identification

Compared with the stochastic system identification methods, the a priori
assumptions on deterministic robust identification are very minimal. There
is no assumption made on the order of the system and no assumption on
the noise affecting its measured outputs. It is assumed the system belongs
to a particular class and its measurement noise is unknown but bounded
(UBB) by a known value which is often available for most systems. The
aim is to obtain a suitable nominal model as well as a "hard" uncertainty
bound using the a posteriori information (experimental data) and the a priori
information (see figure 2 ). Such a derived nominal model and its uncertainty
bound are suitable for any controller design synthesis including adaptive
control, predictive control, H, control, £; control, and more importantly,
robust control.

Robust Identification problem is a worst-case control oriented identifica-
tion process originally proposed in [8] as an alternative to the classical system
identification process to obtain "hard" bound on model error suitable for
robust control. The classical system identification procedures are not suitable
for robust control since it assumes a fixed model structure and a stochastic
noise. Robust Identification is based on deterministic worst-case with no prior
assumption on the model order. It identifies a family of models in which the
central is considered the nominal model and the radius is the uncertainty see
figure 2. Unlike classical system identification procedure, the uncertainty in
the model originates from two different sources:
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« Measurement noise.
« Lack of knowledge of the system itself due to limited experimental
information provided by the system.

Fig. 2: A circle with the center denoting the nominal model and its radius,
A, denoting the uncertainty in the model. It is assumed the true system is
within the circle.

Hence, the identification procedure does not only depend on the experi-
mental data but also on the a priori class of system to be identified. The
procedure identifies a nominal model from the given a posteriori data and
provides a worst-case bound on the H-norm of the system for the purpose
of robust control design.

As inputs, the Robust Identification algorithm admits both a priori as well
as a posteriori information. The a priori information involves all assumptions
made on the system including the maximum gain, K, and the stability margin
€. A a posteriori information to the identification algorithm includes the mea-
surement data and the bounded noise on measurements. When the available
a posteriori data is a point frequency measurements, the H . identification
procedure is used ( see [8], [13]); whereas, £; identification procedure is
used for time domain data (see [10], [13]). For the time domain data, we
will assume the following a priori information on our system:

« The system to be identified belongs to a class Hoo(K) i.e the set of

exponentially stable system with a stability margin of (p-1), and a peak
response to complex exponential inputs of K.

where H(z) is the standard z-transform evaluated at —-. Hence, causal
stable system H(z) is analytic inside the unit circle.

o A bound ¢ of the measurement noise 7:(k) € £x(et) [4].

b =

Then the Robust Identification problem is stated as follow: given N time
domain noisy data and some a priori information on the system of y(k) =
h(k) +n(k)k = 0,...,N-1, determine:
1) Whether the a a priori information is consistent with the a posteriori
information ("consistency" problem).
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2) If 1 is true, then determine such a model as well as worst case iden-
tification error ("interpolation" problem).

C. Solving the Consistency and Interpolation Problem

As mentioned above, the consistency problem determines if the a priori
assumptions on the system is consistent with the a posteriori information of
the system. The following result will be used to establish the consistency

problems:
Problem /. [4] Given complex numbers ¢;, i = 0,1, ...,n— 1, determine
a function h € BH . such that

h(A) = co + 1A+ ...+ e A AG(N), (3)

where § € BHno.
In essence, we are to determine the first n Taylor series coefficients of
the function A(A) evaluated at zeros corresponding to the given complex
numbers, 1.e.,
Bk (0)
k!

To solve the above problem, we use the following Interpolation Theorem
suitable of solving time-domain robust identification problems:

Lemma /: [4] (Carathéodory-Fejér ). Given complex numbers c;, @ =
0,1,...,n — 1, there exists a function h € BH o such that (3) is satisfied if
and only if the following semi-definite equation in (4) holds

I-TIT, >0 4)

=c¢,, k=0.1,2,...,n—1.

where T, is the associated Toeplitz matrix corresponding to the sequence
c=[co,er,00, 00 en1].

For equality in equation (4), the function is unique and non-unique otherwise.
When non-unique, an arbitrary parameterization function f(\) € BH is

chosen such _ gnfO) +g12()

921(A) f(A) + g22(A)
It has been shown that the consistency problem reduces to a (convex) Linear
Matrix Inequality (LMI) feasibility problem. Specifically, the a posteriori
information is consistent with the a priori information if there exists a vector

h(N)

(5)

h = [hg, hy,.... hy, 1] sach that the following LMIs satisfied:
_ R? 2o
Mg(h) = [ F }1-%2 } >0
K :

(6)

—€ < ITU—yI<€t_
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where R =diag[ 1 p p?> ... p"!']and
ho h1 h-N,—l
0 h-g }I-_.'\,'r_g
F =
0 0 ... hy N
y = loys-ynal”
u = [ug,up... 11"-3",.—1]?1

Once the consistency is established by solving equation 6, the set of all
models consistent with the a priori assumption and a posteriori data can
be parameterized as a Linear Fractional Transformation (LFT) with a free
parameter ¢(z) € BMH~. The central/nominal model is then obtained by
setting ¢(z) = 0 with order less than or equal to N;. Minimal state-space
representation of the system ((z) can be represented as follow:

A | Bg
G(z) = |—
(2) { ‘e | Da ]

Ag=A-[CIC_ + (A" - )Mg] 'CTC_(A-1)

Be = —[(AT — )Mg + CTC_|"'C_ ®)
Co=C (AT =M +CTC_7'CTC_(A-1)-CL(A-1T)
Dg = C (AT — )My +CTCc_|-1CT
where
N, WT'R
| 0 Tnxn, _ .
A—[U 0 ],c__ 10 .0, Cp=
The worst case model error can be computed as follow:[7]
N-1 k -
K K
€|l < min < € wil.— ¢+ ———— (9)
le Z { §| | pk} AT

where w; depends only on the known input signal, in the simplest case
where u = ¢ then wg = 1,w; = 0,7 > 1.

4 Application to anemia management problem

The goal in anemia drug dosing is to maintain patient hemoglobin level
to be within the target range of 11 — 12 Since the drug dosing process
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is carried out in a closed loop setting, it is imperative to use a feedback
control system to achieve this objective. The use of feedback control system
requires a model capable of describing the dynamic relationship between
input Erythropoietin and output Hemoglobin. Robust Identification procedure
is used to derive such a model. The necessary requirements for Robust
Identification procedure includes the a priori and a posteriori information on
the system to be identified. As state above, the a priori information includes
the maximum gain on the system in response to a unit input and the its
stability margin. A process to determine the maximum gain parameter was
given in section III. The stability margin was estimated based on the structure
of patient data. It should be pointed out that the accurate of these parameter
values do not affect the attainment of a model. Since these parameters are
estimated due to engineering faith, we must validate the model using new
(unseen) data.

Using robust identification for patient modeling has three added benefits:

« No assumption is made about the model order.

« Small data set can be used for the model estimation.

« No statistical assumptions are made on the system.

5 Results

Figure 3 shows results of the robust identification procedure for patient
#3. Twenty-two input/output (Epo/Hb) data were used to derived the model.
Equation (10) shows the a 4" order system nominal model. It can be ob-
served from figure 3 that the model is able to follow the dynamic behavior
of the patient. For validation purposes, we use the model to predict the 23"
onward hemoglobin level of the patient.

M
Gnmn(#%) (2) = % (10)

where M (z) and N(z) are defined by equations in (11)

M(z) = 0.0011632* + 2.503e — 052> — 0.00076222> (11)
+6.269¢ — 052 + 0.0005985
N(z) = z* —0.30142% — 0.438822 4+ 0.1212 — 0.1114;

Using the notations of Z transform, the model equation in (10) can be
translated to equation in (12).

Hgbpoy = 0.3014H gbyy 5 + 0.4388H gby o — 0.121H gby 4y
+0.1114H gby, + 0.001163 Epogyq + 2.503¢ — 05 Epoy 43
—0.0007622FE poy..o + 6.269¢ — 05 Epoy.1 + 0.0005985 Epoy. (12)
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Patient #3 with 22 data used for Robust Identification.

a

Hgh (g/dL)

=

*h ¥

Epo (x1000)

0 5 10 15 20 25 30
Time {weeks)

Fig. 3: Patient #3: [Top] 22 data points used for #; identification (*). Prediction
range (0). Reduced 4" order model prediction output (+-). [Bottom] Input data used
for £1 identification (*:) and data not used for identification (o-).

6 Conclusion

A robust identification methodology has been used to acquire ESRD pa-
tient model using actual patient data. The model obtained is a linear time
invariant system model capable of extracting essential informations on pa-
tients dynamics. We further perform model validation to check for validity
of our model using patient data not used in the identification process. It
has been shown the procedure is capable of producing model suitable for
Robust identification procedure. A merit of the procedure is its capabilities
of generating a model with small dataset. The next step in this effort is to
use the derived nominal model to design a controller for the patient.
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