Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, global pharmaceutical consumption has increased, resulting in the increased release into the environment and endangering the entire ecosystem. These pharmaceuticals have attracted considerable attention due to their persistence, toxicity, and the appearance of resistance genes and development antibiotic-resistance bacteria. Furthermore, conventional wastewater treatment plants are ineffective in treating antibiotic-contaminated wastewater. Thus, algae-based technologies are sustainable, low-cost, and friendly to the environment. In this context, immobilization appears to be of particular interest to many researchers as they develop new, efficient, greener strategies for the elimination of toxic and hazardous pollutants. provide a critical overview of algal immobilization-based technologies, and a biotechnological tool that restricts cell movement by confining it within a polymer matrix or attaching it to a rigid support is a promising, and cost-effective alternative that does not necessitate the use of additional chemicals. This paper presents strategies for the systematic removal of pharmaceuticals based on algae immobilization techniques as an economical, effective, and feasible alternative technology for removing pharmaceuticals and environmental concerns from water bodies and discusses the benefits and drawbacks of these techniques.
Wydawca
Rocznik
Tom
Strony
44--60
Opis fizyczny
Bibliogr. 130 poz., rys., tab.
Twórcy
autor
- Environmental Research & Study Center, University of Babylon, Babylon, Iraq
autor
- Department of Biology, College of Science, University of Babylon, Babylon, Iraq
autor
- Department of Biology, College of Science, University of Babylon, Babylon, Iraq
Bibliografia
- 1. Abu Sepian, N.R., Mat Yasin, N.H., Zainol, N., Rushan, N.H., Ahmad, A.L. 2019. Fatty acid profile from immobilised Chlorella vulgaris cells in different matrices. Environmental technology, 40(9), 1110–1117. https://doi.org/10.1080/09593330.2017.1408691
- 2. Adeleye, A.S., Xue, J., Zhao, Y., Taylor, A. A., Zenobio, J. E., Sun, Y.,... & Zhu, Y. (2022). Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. Journal of Hazardous Materials, 424, 127284. https://doi.org/10.1016/j.jhazmat.2021.127284
- 3. Ahmed, M. B., Zhou, J. L., Ngo, H. H., and Guo, W. 2015. Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Science of the Total Environment, 532, 112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130
- 4. Ahmed, M. J. 2017. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons. Environmental toxicology and pharmacology, 50, 1–10. https://doi.org/10.1016/j.etap.2017.01.004
- 5. Almeida, ., Silva, M. G., Soares, A. M., and Freitas, R. 2020. Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. Environmental research, 185, 109316. https://doi.org/10.1016/j.envres.2020.10931
- 6. Angulo, E., Bula, L., Mercado, I., Montaño, A., and Cubillán, N. 2018. Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresource technology, 257, 17–22. https://doi.org/10.1016/j.biortech.2018.02.079
- 7. Baena-Nogueras, R. M., González-Mazo, E., and Lara-Martín, P. A. 2017. Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Science of the total environment, 590, 643–654. https://doi.org/10.1016/j.scitotenv.2017.03.015
- 8. Bai, X., and Acharya, K. 2017. Algal-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. Sci. Total Environ. 581, 734–740. https://doi.org/10.1016/j.scitotenv.2016.12.192
- 9. Bebianno, M. J., Mello, A. C. P., Serrano, M. A. S., Flores-Nunes, F., Mattos, J. J., Zacchi, F. L., Bainy, A.C.D. 2017. Transcriptional and cellular effects of paracetamol in the oyster Crassostrea gigas. Ecotoxicology and environmental safety, 144, 258–267. https://doi.org/10.1016/j.ecoenv.2017.06.034
- 10. Bownik, A., Ślaska, B., Bochra, J., Gumieniak, K., and Gałek, K. 2019. Procaine penicillin alters swimming behaviour and physiological parameters of Daphnia magna. Environmental Science and Pollution Research, 26, 18662–18673. https://doi.org/10.1007/s11356-019-05255-2
- 11. Cao, S., Teng, F., Lv, J., Zhang, Q., Wang, T., Zhu, C.,... & Tao, Y. 2022. Performance of an immobilized microalgae-based process for wastewater treatment and biomass production: nutrients removal, lipid induction, microalgae harvesting and dewatering. Bioresource Technology, 127298. https://doi.org/10.1016/j.biortech.2022.127298
- 12.Capolupo, M., Díaz-Garduño, B., and Martín-Díaz, M. L. 2018. The impact of propranolol, 17α-ethinylestradiol, and gemfibrozil on early life stages of marine organisms: effects and risk assessment. Environmental science and pollution research, 25, 32196–32209. https://doi.org/10.1007/s11356-018-3185-6
- 13. Carbone, D. A., Olivieri, G., Pollio, A., & Melkonian, M. 2020. Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express, 10(1), 1–14. https://doi.org/10.1186/s13568-020-01110-7
- 14. Carbone, D. A., Olivieri, G., Pollio, A., & Melkonian, M. 2020. Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express, 10(1), 1–14. https://doi.org/10.1186/s13568-020-01110-7
- 15. Carpenter, C. M., and Helbling, D. E. 2018. Widespread micropollutant monitoring in the Hudson River estuary reveals spatiotemporal micropollutant clusters and their sources. Environmental science & technology, 52(11), 6187–6196. https://doi.org/10.1021/acs.est.8b00945
- 16. Chandel, N., Ahuja, V., Gurav, R., Kumar, V., Tyagi, V. K., Pugazhendhi, A.,... & Bhatia, S. K. 2022. Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. Science of The Total Environment, 825, 153895. https://doi.org/10.1016/j.scitotenv.2022.153895
- 17. Chen, S., Wang, L., Feng, W., Yuan, M., Li, J., Xu, H.,... and Zhang, W. 2020. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Scientific Reports, 10(1), 8243. https://doi.org/10.1038/s41598-020-65219-2
- 18.Cheng, Z., Dong, Q., Liu, Y., Yuan, Z., Huang, X. 2022. Fate characteristics, exposure risk, and control strategy of typical antibiotics in a Chinese sewerage system: A review. Environment International, 107396. https://doi.org/doi.org/10.1016/j.envint.2022.107396
- 19. Chia, W.Y., Tang, D.Y.Y., Khoo, K.S., Lup, A.N.K., Chew, K.W. 2020. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4, 100065. https://doi.org/10.1016/j.ese.2020.100065
- 20. Chu, Y., Zhang, C., Wang, R., Chen, X., Ren, N., Ho, S.H. 2022. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms. Water Research, 221, 118834. https://doi.org/doi.org/10.1016/j.watres.2022.118834
- 21.Corredor, L., Barnhart, E. P., Parker, A. E., Gerlach, R., Fields, M.W. 2021. Effect of temperature, nitrate concentration, pH and bicarbonate addition on biomass and lipid accumulation in the sporulating green alga PW95. Algal Research, 53, 102148. https://doi.org/doi.org/10.1016/j.algal.2020.102148
- 22. Cortez, F.S., da Silva Souza, L., Guimarães, L.L., Almeida, J.E., Pusceddu, F.H., Maranho, L. A., Pereira, C.D.S. 2018. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). Science of the Total Environment, 637, 1363–1371. https://doi.org/10.1016/j.scitotenv.2018.05.069
- 23. Cortez, F.S., da Silva Souza, L., Guimarães, L.L., Pusceddu, F.H., Maranho, L.A., Fontes, M. K., Pereira, C.D.S. 2019. Marine contamination and cytogenotoxic effects of fluoxetine in the tropical brown mussel Perna perna. Marine pollution bulletin, 141, 366–372. https://doi.org/10.1016/j.marpolbul.2019.02.065
- 24. Couto, E., Assemay, P., Carneiro, G.C.A., Soares, D.C.F. 2022. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. Chemosphere, 134808. https://doi.org/10.1016/j.chemosphere.2022.134808
- 25. da Silva Rodrigues, D.A., da Cunha, C.C.R.F., Freitas, M.G., de Barros, A.L.C., Neves, P.B., Pereira, A.R., Afonso, R.J.D.C.F. 2020. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Science of The Total Environment, 749, 141441. https://doi.org/10.1016/j.scitotenv.2020.141441
- 26. Daneshvar, E., Zarrinmehr, M.J., Hashtjin, A.M., Farhadian, O., Bhatnagar, A. 2018. Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. Bioresource technology, 268, 523–530. https://doi.org/10.1016/j.biortech.2018.08.032
- 27. De-Bashan, L. E., Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects.Bioresource technology, 101(6), 1611–1627 https://doi.org/10.1016/j.biortech.2009.09.043
- 28. Zhuang, L.L., Mengting, L., Ngo, H.H. 2020. Nonsuspended microalgae cultivation for wastewater refinery and biomass production, 308, 123320. https://doi.org/10.1016/j.biortech.2020.123320
- 29. Emami Moghaddam, S.A., Harun, R., Mokhtar, M. N., Zakaria, R. 2018. Potential of zeolite and algae in biomass immobilization. BioMed research international, 2018. https://doi.org/10.1155/2018/6563196
- 30. Emparan, Q., Harun, R., Jye, Y.S. 2019. Phycoremediation of treated palm oil mill effluent (TPOME) using Nannochloropsis sp. cells immobilized in the biological sodium alginate beads: effect of POME concentration. BioResources, 14(4), 9429–9443. https://doi.org/10.15376/biores.14.4.9429-9443
- 31. Eroglu, E., Smith, S.M., Raston, C.L. 2015. Application of various immobilization techniques for algal bioprocesses. Biomass and Biofuels from Microalgae: Advances in Engineering and Biology, 19-44. https://doi.org/10.1007/978-3-319-16640-7_2
- 32. Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., Korzeniewska, E. 2020. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. European Journal of Pharmacology, 866, 172813. https://doi.org/10.1016/j.ejphar.2019.172813.
- 33. Fernandes, J.P., Almeida, C.M.R., Salgado, M.A., Carvalho, M.F., Mucha, A.P. 2021. Pharmaceutical compounds in aquatic environments—Occurrence, fate and bioremediation prospective. Toxics, 9(10), 257. https://doi.org/10.3390/toxics9100257
- 34. Ferrando, L., Matamoros, V. 2020. Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae-based systems. Science of the Total Environment, 703, 134740. https://doi.org/10.1016/j.scitotenv.2019.134740
- 35. Fonseca, T.G., Carriço, T., Fernandes, E., Abessa, D.M.S., Tavares, A., Bebianno, M.J. 2019. Impacts of in vivo and in vitro exposures to tamoxifen: comparative effects on human cells and marine organisms. Environment international, 129, 256–272. https://doi.org/10.1016/j.envint.2019.05.014
- 36. Fontes, M.K., Gusso-Choueri, P.K., Maranho, L.A., de Souza Abessa, D.M., Mazur, W.A., de Campos, B.G., Pereira, C.D.S. 2018. A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: A contribution to characterize the hazard. Water research, 132, 361–370. https://doi.org/10.1016/j.watres.2017.12.077
- 37. Garbowski, T., Pietryka, M., Pulikowski, K., Richter, D. 2020. The use of a natural substrate for immobilization of microalgae cultivated in wastewater. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-64656-3
- 38. García-Galán, M.J., Arashiro, L., Santos, L.H., Insa, S., Rodríguez-Mozaz, S., Barceló, D., Garfi, M. 2020. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems.Journal of hazardous materials, 390, 121771. https://doi.org/10.1016/j.jhazmat.2019.121771
- 39. Garcia-Rodríguez, A., Matamoros, V., Fontàs, C., Salvadó, V. 2013. The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: a laboratory-scale study. Chemosphere, 90(8), 2297–2302. https://doi.org/10.1016/j.chemosphere.2012.09.092
- 40. Girijan, S., Kumar, M. 2019. Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation. Current Opinion in Environmental Science & Health, 12, 18–29. https://doi.org/10.1016/j.coesh.2019.08.005.
- 41. Godoy, A.A., Domingues, I., De Carvalho, L.B., Oliveira, Á.C., de Jesus Azevedo, C.C., Taparo, J.M., Kummrow, F. 2020. Assessment of the ecotoxicity of the pharmaceuticals bisoprolol, sotalol, and ranitidine using standard and behavioral endpoints. Environmental Science and Pollution Research, 27, 5469–5481. https://doi.org/10.1007/s11356-019-07322-0.
- 42. Grimes, K.L., Dunphy, L.J., Loudermilk, E.M., Melara, A.J., Kolling, G.L., Papin, J.A., Colosi, L.M. 2019. Evaluating the efficacy of an algaebased treatment to mitigate elicitation of antibiotic resistance. Chemosphere, 237, 124421. https://doi.org/10.1016/j.chemosphere.2019.124421
- 43. Guo, W.Q., Zheng, H.S., Li, S., Du, J.S., Feng, X.C., Yin, R.L.,. Chang, J.S. 2016. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresource technology, 221, 284–290. https://doi.org/10.1016/j.biortech.2016.09.036.
- 44. Han, M., Zhang, C., Ho, S.H. 2022. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment. Environmental Science and Ecotechnology, 100227. https://doi.org/10.1016/j.ese.2022.100227
- 45. Han, M., Zhang, C., Li, F., Ho, S.H. 2022. Data-driven analysis on immobilized microalgae system: New upgrading trends for microalgal wastewater treatment. Science of The Total Environment, 158514. https://doi.org/10.1016/j.scitotenv.2022.158514
- 46. Hejna, M., Kapuścińska, D., Aksmann, A. 2022. Pharmaceuticals in the aquatic environment: a review on eco-toxicology and the remediation potential of algae. International Journal of Environmental Research and Public Health, 19(13), 7717. https://doi.org/10.3390/ijerph19137717
- 47. Hena, S., Gutierrez, L., Croué, J.P. 2021. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of hazardous materials, 403, 124041. https://doi.org/10.1016/j.jhazmat.2020.12404
- 48. Hena, S., Gutierrez, L., Croué, J.P. 2020. Removal of metronidazole from aqueous media by C. vulgaris. Journal of hazardous materials, 384, 121400. https://doi.org/10.1016/j.jhazmat.2019.121400
- 49. Hena, S., Znad, H., Heong, K.T., Judd, S. 2018. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis, Water Res. 128, 267–277. https://doi.org/10.1016/j.watres.2017.10.057
- 50. Hirte, K., Seiwert, B., Schüürmann, G., Reemtsma, T. 2016. New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water research, 88, 880–888. https://doi.org/10.1016/j.watres.2015.11.028
- 51. Jin, X., Xu, H., Qiu, S., Jia, M., Wang, F., Zhang, A., Jiang, X. 2017. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature. Journal of Photochemistry and Photobiology A: Chemistry, 332, 224–231. https://doi.org/10.1016/j.jphotochem.2016.08.032
- 52. Kadri, S.S. 2020. Key takeaways from the US CDC’s 2019 antibiotic resistance threats report for frontline providers. Critical care medicine. https://doi.org/10.1097/CCM.0000000000004371
- 53. Kalyva, M. 2017. Fate of pharmaceuticals in the environment-A review. id: diva2:1085088.
- 54. Kaparapu, J. 2017. Micro algal immobilization techniques. Journal of Algal Biomass Utilization, 8(1), 70.–64
- 55. Kaparapu, J., Geddada, M.N.R. 2016. Applications of immobilized algae. J. Algal Biomass Util, 7(2), 122–128.
- 56. Kayode-Afolayan, S.D., Ahuekwe, E.F., Nwinyi, O.C. 2022. Impacts of pharmaceutical effluents on aquatic ecosystems. Scientific African, e01288. https://doi.org/10.1016/j.sciaf.2022.e01288
- 57. Kayode-Afolayan, S.D., Ahuekwe, E.F., Nwinyi, O.C. 2022. Impacts of pharmaceutical effluents on aquatic ecosystems. Scientific African, e01288. https://doi.org/10.1016/j.sciaf.2022.e01288
- 58. Kayode-Afolayan, S.D., Ahuekwe, E.F., Nwinyi, O.C. 2022. Impacts of pharmaceutical effluents on aquatic ecosystems. Scientific African, e01288. https://doi.org/10.1016/j.sciaf.2022.e01288
- 59. Khan, M.I., Shin, J.H., Kim, J.D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 1–21. https://doi.org/10.1186/s12934-018-0879-x
- 60. Klaminder, J., Jonsson, M., Fick, J., Sundelin, A., Brodin, T. 2014. The conceptual imperfection of aquatic risk assessment tests: highlighting the need for tests designed to detect therapeutic effects of pharmaceutical contaminants. Environmental Research Letters, 9(8), 084003. https://doi.org/10.1088/1748-9326/9/8/084003
- 61. Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., Laxminarayan, R. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U.S.A. 115, E3463–E3470. https://doi.org/10.1073/pnas.171729511
- 62. Kube, M., Fan, L., Roddick, F. 2021. Alginateimmobilised algal wastewater treatment enhanced by species selection. Algal Research, 54, 102219. https://doi.org/10.1016/j.algal.2021.102219
- 63. Kiki, C., Rashid, A., Wang, Y., Li, Y., Zeng, Q., Yu, C. P.,and a Sun, Q. 2020. Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways.Journal of hazardous materials, 387, 121985. https://doi.org/10.1016/j.jhazmat.2019.121985
- 64. Kovalakova, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., Sharma, V.K. 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351. https://doi.org/10.1016/j.chemosphere.2020.126351
- 65. Lebeau, T., Robert, J.M. 2006. Biotechnology of immobilized micro algae: a culture technique for the future. Algal cultures, analogues of blooms and applications. Science Publishers, Enfield, 801-837.
- 66. Lee, H., Jeong, D., Im, S., Jang, A. 2020. Optimization of alginate bead size immobilized with Chlorella vulgaris and Chlamydomonas reinhardtii for nutrient removal. Bioresource technology, 302, 122891. https://doi.org/10.1016/j.biortech.2020.122891
- 67. Leng, L., Wei, L., Xiong, Q., Xu, S., Li, W., Lv, S., Zhou, W. 2020. Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere, 238, 124680. https://doi.org/10.1016/j.chemosphere.2019.124680
- 68. Li, J., Min, Z., Li, W., Xu, L., Han, J., Li, P. 2020. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: toxicity and removal mechanism. Ecotoxicology and Environmental Safety, 191, 110156. https://doi.org/10.1016/j.ecoenv.2019.110156
- 69. Li, S., Show, P.L., Ngo, H.H., Ho, S.H. 2022. Algaemediated antibiotic wastewater treatment: A critical review. Environmental Science and Ecotechnology, 100145. https://doi.org/10.1016/j.ese.2022.100145
- 70. Li, S., Show, P.L., Ngo, H.H., Ho, S.H. 2022. Algaemediated antibiotic wastewater treatment: A critical review. Environmental Science and Ecotechnology, 100145. https://doi.org/10.1016/j.ese.2022.100145
- 71. Li, X., Cheng, Z., Dang, C., Zhang, M., Zheng, Y., Xia, Y. 2021. Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater. Environmental Science and Ecotechnology, 7, 100105. https://doi.org/10.1016/j.ese.2021.100105
- 72. Liu, C., Tan, L., Zhang, L., Tian, W., Ma, L. 2021. A review of the distribution of antibiotics in water in different regions of China and current antibiotic degradation pathways. Frontiers in Environmental Science, 221. https://doi.org/10.3389/fenvs.2021.69229
- 73. Liu, R., Li, S., Tu, Y., Hao, X. 2021. Capabilities and mechanisms of microalgae on removing micropollutants from wastewater: A review.Journal of Environmental Management, 285, 112149. https://doi.org/10.1016/j.jenvman.2021.112149
- 74. Liu, Y., Guan, Y., Gao, B., Yue, Q. 2012. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa. Ecotoxicology and environmental safety, 86, 23–30. https://doi.org/10.1016/j.ecoenv.2012.09.004
- 75. Madikizela, L.M., Ncube, S. 2022. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. Science of the Total Environment, 155780. https://doi.org/10.1016/j.scitotenv.2022.155780
- 76. Majumder, A., Gupta, B., Gupta, A.K. 2019. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environmentalresearch, 176, 108542. https://doi.org/10.1016/j.envres.2019.108542
- 77. Mallick, N. 2020. Immobilization of microalgae. Immobilization of Enzymes and Cells: Methods and Protocols, 453–471. https://doi.org/10.1007/978-1-0716-0215-7_31
- 78. Mansouri, F., Chouchene, K., Roche, N., and Ksibi, M. 2021. Removal of Pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends.Applied Sciences, 11(14), 6659. https://doi.org/10.3390/app11146659
- 79. Mezzelani, M., Fattorini, D., Gorbi, S., Nigro, M., Regoli, F. 2020. Human pharmaceuticals in marine mussels: Evidence of sneaky environmental hazard along Italian coasts. Marine Environmental Research, 162, 105137. https://doi.org/10.1016/j..2020.10513marenvres
- 80. Mitchell, S.M., Ullman, J.L., Teel, A.L., Watts, R.J. 2014. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Science of the total environment, 466, 547–555. https://doi.org/10.1016/j.scitotenv.2013.06.027
- 81. Mollamohammada, S., Aly Hassan, A., & Dahab, M. 2020. Nitrate removal from groundwater using immobilized heterotrophic algae. Water, Air, & Soil Pollution, 231(1), 1–13. https://doi.org/10.1007/s11270-019-4334-3
- 82. Mondal, M., Khan, A.A. 2021. Immobilized Microalgae for Removing Industrial Pollutants: A Greener Technique. In Wastewater Treatment (pp. 367–384). Elsevier. https://doi.org/10.1016/B978-0-12-821881-5.00018-0
- 83. Moreno Osorio, J.H., Pollio, A., Frunzo, L., Lens, P.N.L., Esposito, G. 2021. A review of microalgal biofilm technologies: definition, applications, settings and analysis. Frontiers in Chemical Engineering, 3, 737710. https://doi.org/10.3389/fceng.2021.737710
- 84. Naghdi, M., Taheran, M., Brar, S.K., Kermanshahi-Pour, A., Verma, M., Surampalli, R.Y. 2018. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental pollution, 234, 190–213. https://doi.org/10.1016/j.envpol.2017.11.060
- 85. Nair, A.T., Senthilnathan, J., Nagendra, S.S. 2019. Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. Journal of Water Process Engineering, 28, 322–330. https://doi.org/10.1016/j.jwpe.2019.02.017
- 86. Nguyen, H.T., Yoon, Y., Ngo, H.H., Jang, A. 2021. The application of microalgae in removing organic micropollutants in wastewater. Critical Reviews in Environmental Science and Technology, 51(12), 1187–1220. https://doi.org/10.1080/10643389.2020.1753633
- 87. Nikolaou, A., Meric, S., Fatta, D. 2007. Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and bioanalytical chemistry, 387(4), 1225–1234.
- 88. Norvill, Z.N., Toledo-Cervantes, A., Blanco, S., Shilton, A., Guieysse, B., Mu~noz, R. 2017. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds. Bioresour. Technol., 232, 35e43. https://doi.org/10.1016/j.biortech.2017.02.011
- 89. Oberoi, A.S., Jia, Y.Y., Zhang, H.Q., Khanal, S.K., Lu, H. 2019. Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ. Sci. Technol. 53, 7234–7264. https://doi.org/10.1021/acs.est.9b01131
- 90. Pan, M., Lyu, T., Zhan, L., Matamoros, V., Angelidaki, I., Cooper, M., Pan, G. 2021. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Research, 190, 116735. https://doi.org/10.1016/j.watres.2020.116735
- 91. Pang, N., Bergeron, A.D., Gu, X., Fu, X., Dong, T., Yao, Y., Chen, S. 2020. Recycling of nutrients from dairy wastewater by extremophilic microalgae with high ammonia tolerance. Environmental science & technology, 54(23), 15366–15375. https://doi.org/10.1021/acs.est.0c02833
- 92. Partovinia, A., Rasekh, B. 2018. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews in Environmental Science and Technology, 48(1), 1–38. https://doi.org/10.1080/10643389.2018.1439652
- 93. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C.U., Mohan, D. 2019. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical reviews, 119(6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299
- 94. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C.U., Mohan, D. 2019. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical reviews, 119(6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299
- 95. Peter, A.P., Koyande, A.K., Chew, K.W., Ho, S.H., Chen, W.H., Chang, J.S., Show, P.L. 2022. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renewable and Sustainable Energy Reviews, 154, 111852. https://doi.org/10.1016/j.rser.2021.111852
- 96. Rambabu, K., Banat, F., Pham, Q.M., Ho, S.H., Ren, N.Q., Show, P.L. 2020. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024
- 97.Rempel, A., Gutkoski, J.P., Nazari, M.T., Biolchi, G.N., Cavanhi, V.A.F., Treichel, H., Colla, L.M. 2021. Current advances in microalgaebased bioremediation and other technologies for emerging contaminants treatment. Sci. Total Environ., 772, 144918. https://doi.org/10.1016/j.scitotenv.2020.144918
- 98. Rosales, A.G., Rodríguez, C.D., Ballen Segura, M. 2018. Pollutant Remotion and Growth of Scenedesmus sp. on Wastewater from Tannery. A Comparisonm Between Free and Immobilized Cells. Ingeniería y Ciencia, 14(28), 11–34. https://doi.org/10.17230/ingciencia.14.28.1.
- 99. Ruiz-Marin, A., Canedo-López, Y., Chávez-Fuentes, P. 2020. Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality. Amb Express, 10(1), 1–7. https://doi.org/10.1186/s13568-020-01129-w
- 100. Salem, O.M., Abdelsalam, A., Boroujerdi, A. 2021. Bioremediation potential of Chlorella vulgaris and Nostoc paludosum on azo dyes with analysis of metabolite changes. Baghdad Sci J, 18(3), 445–454. http://dx.doi.org/10.21123/bsj.2021.18.3.0445
- 101. Salman, J.M., Kaduem, N.F., Juda, S.A. 2022. Algal immobilization as a green technology for domestic wastewater treatment. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1088(1), 012005. https://doi.org/10.1088/1755-1315/1088/1/012005
- 102. Samal, K., Mahapatra, S., Ali, M.H. 2022. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 100076. https://doi.org/10.1016/j.nexus.2022.100076
- 103. Sánchez-Saavedra, M., Molina-Cárdenas, C.A., Castro-Ochoa, F.Y., Castro-Ceseña, A.B. 2019. Protective effect of glycerol and PEG-methyl ether methacrylate coatings on viability of alginate-immobilized Synechococcus elongatus after cold storage. Journal of Applied Phycology, 31(4), 2289–2297. https://doi.org/10.1007/s10811-019-1756-7
- 104. Sarkheil, M., Ameri, M., Safari, O. 2022. Application of alginate-immobilized microalgae beads as biosorbent for removal of total ammonia and phosphorus from water of African cichlid (Labidochromis lividus) recirculating aquaculture system. Environmental Science and Pollution Research, 29(8), 11432–11444. https://doi.org/10.1007/s11356-021-16564-w
- 105. Sen, S., Dutta, A., Ponnala, R., Kamila, B., Baltrėnas, P., Baltrėnaitė, E., Dutta, S. 2020. Removal of hexavalent chromium from synthetic wastewater using alginate immobilized cyanobacteria: Experiment and mathematical modeling. Environmental Engineering Science, 37(4), 283–294. https://doi.org/10.1089/ees.2019.0035
- 106. Song, C., Wei, Y., Qiu, Y., Qi, Y., Li, Y., Kitamura, Y. 2019. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study. Bioresource technology, 272, 529–534. https://doi.org/10.1016/j.biortech.2019.122320
- 107. Soo, C.L., Chen, C.A., Bojo, O., Hii, Y.S. 2017. Feasibility of marine microalgae immobilization in alginate bead for marine water treatment: bead stability, cell growth, and ammonia removal.International Journal of Polymer Science, 2017. https://doi.org/10.1155/2017/6951212
- 108. Sun, M., Lin, H., Guo, W., Zhao, F., Li, J. 2017. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa. Journal of Ocean University of China, 16, 1167–1174. https://doi.org/10.1007/s11802-017-3367-8
- 109. Tijani, J.O., Fatoba, O.O., Babajide, O.O., Petrik, L.F. 2016. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environmental chemistry letters, 14, 27-49. review. Environ Chem Lett, 14(1), 27–49. https://doi.org/10.1007/s10311-015-0537-z
- 110. Tiwari, B., Ouarda, Y., Drogui, P., Tyagi, R. D., Vaudreuil, M.A., Sauvé, S., Dubé, R. 2021. Fate of pharmaceuticals in a submerged membrane bioreactor treating hospital wastewater. Frontiers in Water, 3, 730479. https://doi.org/10.3389/frwa.2021.730479
- 111. Vasilieva, S.G., Lobakova, E.S., Lukyanov, A.A., Solovchenko, A.E. 2016. Immobilized microalgae in biotechnology. Moscow University biological sciences bulletin, 71, 170–176. https://doi.org/10.3103/S0096392516030135
- 112. Verlicchi, P., Al Aukidy, M., Zambello, E. 2012. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of the total environment, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028
- 113. Viancelli, A., Michelon, W., Rogovski, P., Cadamuro, R.D., de Souza, E.B., Fongaro, G., Treichel, H. 2020. A review on alternative bioprocesses for removal of emerging contaminants. Bioprocess and biosystems engineering, 43, 2117–2129. https://doi.org/10.1007/s00449-020-02410-9
- 114. Vo, H.N.P., Ngo, H.H., Guo, W., Nguyen, K.H., Chang, S.W., Nguyen, D.D., Bui, X.T. 2020. Micropollutants cometabolism of microalgae for wastewater remediation: effect of carbon sources to cometabolism and degradation products. Water research, 183, 115974. https://doi.org/10.1016/j.watres.2020.115974
- 115. Wang, H., Xi, H., Xu, L., Jin, M., Zhao, W., Liu, H. 2021. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: a review. Science of The Total Environment, 788, 147819. https://doi.org/10.1016/j.scitotenv.2021.147819
- 116. Wang, J.L., Chu, L.B., Wojnarovits, L., Takacs, E. 2020. Occurrence and the fate of antibiotics, antibiotic-resistant genes (ARGs) and antibioticresistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total Environ., 744, 140997. https://doi.org/10.1016/j.scitotenv.2020.140997.
- 117. Wang, L., Li, Y., Wang, L., Zhu, M., Zhu, X., Qian, C., Li, W. 2018. Responses of biofilm microorganisms from moving bed biofilm reactor to antibiotics exposure: Protective role of extracellular polymeric substances. Bioresource technology, 254, 268–277. https://doi.org/10.1016/j.biortech.2018.01.063
- 118. Wu, J. Y., Lay, C.H., Chiong, M.C., Chew, K.W., Chen, C.C., Wu, S.Y., Show, P.L. 2020. Immobilized Chlorella species mixotrophic cultivation at various textile wastewater concentrations.Journal of Water Process Engineering, 38, 101609. https://doi.org/10.1016/j.jwpe.2020.101609
- 119. Xiao, G., Chen, J., Show, P.L., Yang, Q., Ke, J., Zhao, Q., Liu, Y. 2021. Evaluating the application of antibiotic treatment using algae-algae/activated sludge system. Chemosphere, 282, 130966. https://doi.org/10.1016/j.chemosphere.2021.130966
- 120. Xie, P., Chen, C., Zhang, C., Su, G., Ren, N., Ho, S.H. 2020. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water research, 172, 115475. https://doi.org/10.1016/j.watres.2020.115475
- 121. Xie, P., Ho, S.H., Peng, J., Xu, X.J., Chen, C., Zhang, Z.F., Ren, N.Q. 2019. Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products (PPCPs) residues and biodiesel production. Science of the total environment, 688, 253–261. https://doi.org/10.1016/j.scitotenv.2019.06.062
- 122. Xiong, J.Q., Kim, S.J., Kurade, M.B., Govindwar, S., Abou-Shanab, R.A., Kim, J.R., Jeon, B.H. 2019. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. Journal of hazardous materials, 370, 138–146. https://doi.org/10.1016/j..2018.07.049jhazmat
- 123. Xiong, J.Q., Kurade, M.B., Jeon, B.H. 2018. Can microalgae remove pharmaceutical contaminants from water?. Trends in biotechnology, 36(1), 30–44. https://doi.org/10.1016/j.tibtech.2017.09.003
- 124. Xiong, Q., Hu, L.X., Liu, Y.S., Zhao, J.L., He, L.Y., Ying, G.G. 2021. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 155, 106594. https://doi.org/10.1016/j.envint.2021.106594
- 125. Yang, Q., Gao, Y., Ke, J., Show, P.L., Ge, Y., Liu, Y., Chen, J. 2021. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376–7416. https://doi.org/10.1080/21655979.2021.1974657
- 126. Yu, C., Pang, H., Wang, J. H., Chi, Z.Y., Zhang, Q., Kong, F.T., Che, J. 2021. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. Science of The Total Environment, 151891. https://doi.org/10.1016/j.scitotenv.2021.151891
- 127. Yu, Y., Wang, W., Shi, J., Zhu, S., Yan, Y. 2017. Enhanced levofloxacin removal from water using zirconium (IV) loaded corn bracts. Environmental Science and Pollution Research, 24, 10685–10694. https://doi.org/10.1007/s11356-017-8700-7
- 128. Zhang, J., Fu, D., Wu, J. 2012. Photodegradation of Norfloxacin in aqueous solution containing algae. Journal of Environmental Sciences, 24(4), 743–749. https://doi.org/10.1016/S1001-0742(11)60814-0
- 129. Zheng, D.S., Yin, G.Y., Liu, M., Chen, C., Jiang, Y.H., Hou, L.J., Zheng, Y.L. 2021. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ., 777, 146009. https://doi.org/10.1016/j.scitotenv.2021.146009
- 130. Zhuang, L.L., Li, M., Ngo, H.H. 2020. Non-suspended microalgae cultivation for wastewater refinery and biomass production. Bioresource technology, 308, 123320.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07056e71-345a-4030-85da-f5181582e0ca