PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The evolving roles of geophysical test sites in engineering, science and technology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the anomalies generated by various subsurface targets and their responses to different geophysical techniques in various subsoil types is critical to near-surface geophysical investigations. Geophysical test site (GTS) plays a vital role in near-surface geophysical investigations and related Earth sciences to adequately predict the geometries and anomalies generated by the subsurface targets. Therefore, developing a GTS on a site requires some technical efficiencies, mechanical procedures, engineering concepts and scientific approach, depending on the operating environment and the purpose of construction. This paper reviews the evolving roles of GTS in engineering, sciences, and technology via remarkable pedagogical and scientific research. The procedures for designing and installing GTS were also discussed. Every constructed GTS is unique and has its operating environment and sets of scientific requirements. As a result, the execution of GTS should be subjected to numerous factors that invariably affect the overall long time usage and performance. Comparative studies of GTS activities indicate that GTS is a vital geophysical research and academic platform to enrich the outcomes of the geophysical modelling for near-surface geophysical applications in engineering, science and technology. The evolving application of GTS has greatly impacted the field of science and engineering by enhancing the knowledge and understanding of the earth’s interior, which invariably affects the engineers, geophysicists, archaeologists and geologists to be critical in the analysis, interpretation, and providing precise and accurate information of subsurface anomalies underlying the uppermost soil of the earth’s crust. After a critical investigation, it was noted that the installation of GTSs is usually conceived to replicate situations often encountered in field investigation contexts. Examination shows that GTS can provide an ideal platform for young geoscientists, engineers and archaeologists to acquire the requisite skills, knowledge, technical know-how, and professional techniques for resolving near-surface challenges in real-life work situations. More also, a well-developed and equipped GTS could be a watershed in technological advancement, research development, and new scientific ideas. The GTS platform also indicates a promising pedagogical approach to geophysical educational usage, research mobilization, and development of new shallow geophysical techniques for various near-surface investigation and calibrating/testing geophysical equipment, which invariably catalyzed engineering designs, scientific concepts and technological advancement.
Czasopismo
Rocznik
Strony
161--176
Opis fizyczny
Bibliogr. 93 poz.
Twórcy
  • Department of Physics, Air Force Institute of Technology, Kaduna, Nigeria
  • Department of Physics, Ahmadu Bello University, Zaria, Nigeria
  • Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria
autor
  • Department of Physics, Ahmadu Bello University, Zaria, Nigeria
Bibliografia
  • 1. Aboh HO, Dogara MD, Alao JO (2016) Evaluation of the Geotechnical Parameters in Part of Kaduna, Kaduna State Nigeria. World Journal of Applied Science and Technology. 8(2): 108-117. ISSN: 2141-3290. www.wojast.com
  • 2. Acosta JA et al (2022) Soil water content prediction using electrical resistivity tomography (ERT) in mediterranean tree orchard soils. Sensor 22:1365. https://doi.org/10.3390/s22041365
  • 3. Ahmadian M et al (2018) Demonstration of proof of concept of electromagnetic geophysical methods for high resolution of induced fracture networks. Soc Petrol Eng. https://doi.org/10.2118/189858-MS
  • 4. Ahmed AE, Asmaa AA (2021) Depth and structural parameters determination of the sedimentary Basin in Atmur Nuqra Area, South Eastern Desert Egypt using aeromagnetic data analysis. Geomaterials. https://doi.org/10.4236/gm.2021.112002
  • 5. Ahmed M et al (2021) Constructing a geophysical test site for a coastal community’s research and education activities. Lead Edge 40(3):1938-3789. https://doi.org/10.1190/tle40030208.1
  • 6. Alao JO (2023) Impacts of open dumpsite leachates on soil and groundwater quality. Groundw Sustain Dev 20:100877. https://doi.org/ 10.1016/j.gsd.2022.100877
  • 7. Alao JO, Danjuma TT, Ahmad MS, Diya’Ulhaq A (2022) Application of geoelectric resistivity technique to a selected site for agricultural practices, at Kujama Farmland, Kaduna, Nigeria. SSRG Int J Geoinform Geologi Sci 9(1):46-51. https://doi.org/ 10.14445/23939206/IJGGS-V9I1P106
  • 8. Alao JO et al (2022) Assessment of aquifer protective capacity, against the surface contamination. a case study of Kaduna Industrial Vil-läge, Nigeria. Phys Sci Int J 26(1):43-51. https://doi.org/10.9734/ PSIJ/2022/v26i130306
  • 9. Alao JO et al (2022) Geophysical test site in teaching, researching, field-based exercises and solving real-life work situations: a case study. Acta Geod Geoph. https://doi.org/10.1007/ s40328-022-00398-0
  • 10. Alao JO, Danjuma TTM, Nur MS (2022) Electrical conductivity for selection of viable land for agricultural activities and a suitable sites for borehole. Asian J Geologi Res 5(1):37-50
  • 11. Alao JO, Lawal HA, Nur M (2023) Investigation of groundwater vulnerability to open dumpsites and its potential risk using electrical resistivity and water analysis. Heliyon 8:e09855. https://doi.org/ 10.1016/j.heliyon.2023.e13265
  • 12. Alfouzan AF, Bakkour K, Zhou B, Alyousif MM (2021) Developing new geophysical scanners for detection of near-surface buried objects. Arab J Geosci 14:664. https://doi.org/10.1007/ s12517-021-06641-2
  • 13. Almeida ER (2016) Análise da tomografia de micro-ondas em dados GPR sob condięoes controladas: Aplicaęoes em arqueologia e estudos forenses. Ph.D. Thesis, Universidade de Säo Paulo, Brazil
  • 14. Amini A, Ramazi H (2016) Application of electrical resistivity imaging for engineering site investigation. a case study on prospective hospital site, Varamin, Iran. Acta Geophys 64(4):2200-2213. https:// doi.org/10.1515/acgeo-2016-0100
  • 15. Antonio S, Antonio L, Vito I, Vincenzo L (2012) Survey geophysical-for characterization of the coastal saltwater intrusion in metapon-tum forest reserve (Southern Italy). Int J Geophys 2012:238478. https://doi.org/10.1155/2012/238478
  • 16. Bailey JM, Sauck WA (2000) Comparison of EM systems at the Western Michigan University geophysical test site. In: Proceedings of the Symposium on the Application of eophysics to Engineering and Environmental Problems, 1147-1156, https://doi.org/10. 4133/1.2922721
  • 17. Benson CR (1993) Geophysical techniques for subsurface site characterization. In: Daniel DE (ed) Geotechnical practice for waste disposal. Springer, Cham, pp 311-357
  • 18. Bitella G, Satriani V, Lapenna M, AmatoPerniola M (2015) Geophysical techniques for plant, soil, and root research related to sustainability. Springer International Publishing, Cham, pp 352-372
  • 19. Breiner S (1999) Applications manual for portable Agnetometers (Geometrics Inc)
  • 20. Briaud JL (2000) The national geotechnical experimentation sites at Texas A&M University: clay and sand. In: Benoit J, Lutenegger AJ (eds) National geotechnical experimentation sites. Geotechnical Special Publication. American Society of Civil Engineers, Reston VA, pp 26-51. https://doi.org/10.1061/9780784404843. ch02
  • 21. Canata RE, Ferreira F, Borges WR, Salvador F (2020) Analysis of 2D and 3D GPR responses in the Federal University of Paraná forensic geophysics controlled site - a case study. Braz J Geophys 38(2):1-17. https://doi.org/10.22564/rbgf.v38i2.2045
  • 22. Cassidy NJ, Eddies R, Dods S (2011) Void detection beneath reinforced concrete sections: the practical application of ground-penetrating radar and ultrasonic techniques. J Appl Geophys 74(4):263-276. https://doi.org/10.1016/j.jappgeo.2011.06.003
  • 23. Catapano I et al (2012) Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site. J Geophys Eng 9(4):S100-S107. https://doi.org/10.1088/1742-2132/9/4/S100
  • 24. Cavalcanti MM, Rocha MP, Blum M, Borges WR (2018) The forensic geophysical controlled research site of the University of Brasilia, Brazil: results from methods GPR and electrical resistivity
  • 25. tomography. Forensic Sci Int. https://doi.org/10.1016/j.forsciint. 2018.09.033
  • 26. Christian OS, Egil AB, Petter ES, Andreas 0 (2013) Factors affecting the efficiency of fibers in concrete on crack reduction. Open J Civil Eng 3(2):80-85. https://doi.org/10.4236/ojce.2013.32008
  • 27. Chung SG, Giao PH, Tanaka H (2003) Geotechnical characteristics and engineering problems of. Swets & Zeitlinger, Lisse, pp. 505-541, ISBN 90 5809 537 1
  • 28. Corwin D, Plant R (2005) Editorial: applications of apparent soil electrical conductivity in precision agriculture. Comput Electron Agric. https://doi.org/10.1016/J.COMPAG.2004.10.004Co rpusID:2580966
  • 29. Daniel E, Raimi J, Zainab M (2019) Two-dimensional image of seismic refraction tomography and electrical resistivity tomography survey in a geophysical proposed test site at Shika, Ahmadu Bello University Nigeria. Glob J Sci Front Res: H Environ Earth Sci 24(1):241-259
  • 30. Degen D, Veroy K, Wellmann F (2020) Certified reduced basis method in geosciences. Comput Geosci 24:241-259. https:// doi.org/10.1007/s10596-019-09916-6
  • 31. Dérobert X, Lara P (2018) 2TU1208 open database of radargrams: the dataset of the IFSTTAR geophysical test site. Remote Sens 10:530. https://doi.org/10.3390/rs10040530
  • 32. Dogara MD et al (2017) Delineation of the geotechnical parameters within the kaduna refining and petrochemical corporation layout. World J Appl Phys 2(3):36-42. https://doi.org/10.11648/j. wjap.20170203.11
  • 33. Dorcas SE, Michael AO (2014) Improving quality agricultural practices in tropical environments through integrated geophysical methods. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-ISSN: 2321-0990, p-ISSN: 2321-0982.2(5): 128-139; www.iosrjournals.org
  • 34. Duan X et al (2017) A new method to calculate soil loss tolerance for sustainable soil productivity in farmland. Agro Sustain Dev 37(2):1-13. https://doi.org/10.1007/s13593-016-0409-3
  • 35. Emerson DW, Reid JE, Clark DA, Manning PB (1992) The geophysical responses of buried drums—field tests in weathered Hawkesbury Sandstone, Sydney Basin. NSW Explor Geophys 23(4):589-617. https://doi.org/10.1071/EG992589
  • 36. Fagbemigun ST et al (2021) Integration of electrical resistivity and soil analysis for agricultural soil characterization—a case study. Arab J Geosci 14:377. https://doi.org/10.1007/ s12517-021-06772-6
  • 37. Foti S (2017) Geophysical Tests for Geotechnical Site Characterization. ISSMGE IT Administrator: nternational Society for Soil Mechanics and Geotechnical Engineering: https://www.issmge. org/education/recorded-webinars/geophysical-tests-for-geotechnic al-site-characterization
  • 38. Fourie S (2005) Development of an environmental geophysics test site. In: European Association of Geoscientists & Engineers: Conference Proceedings, 9th SAGA Biennial Technical Meeting and Exhibition. https://doi.org/10.3997/2214-4609-pdb.154.019
  • 39. Garré S, Hyndman D, Mary B, Werban U (2021) Geophysics conquering new territories: the rise of Agrogeophysics. Vadose Zone J 20:e20115. https://doi.org/10.1002/vzj2.20115
  • 40. Geometrics (2001) DataMap OhmMapper User Guide, 29006-01, Rev3.0, Manual 9007-01 Rev. A (Geometrics Inc.)
  • 41. Georgiadis M, Michalopoulos A (1985) Bearing capacity of gravity bases on layered soil. J Geotech Eng 111(6):712-729
  • 42. Giao PH, Chung SG, Kim DY, Tanaka H (2003) Electric imaging and laboratory electric resistivity testing for geotechnical investigation of pusan clays. Int J Appl Geophys 52(4):157-175
  • 43. Giao PH, Vichalai C (2006) Construction of a geophysical testing site on soft clays. In: Conference Paper. Proc. of the 8th SEGJ Intl’ Symposium - Imaging and Interpretation, Kyoto, Japan, 277-282 https://doi.org/10.1190/segj082006-001.56
  • 44. Hill JA (2000) Testing the resolution of very shallow geophysics: Data from the EIGG test site, Leicester UK; Conference. 6th EAGE/ EEGS, Meeting of Environmental and Engineering Geophysics, September 3-7,2000, Bochum - Germany. https://doi.org/10.3997/ 2214-4609.201406299; http://www.le.ac.uklgeologyliah/EIGG/ eigghp.html
  • 45. Hinze W, Von Frese R, Saad A (2013) Magnetic data acquisition. Gravity and magnetic exploration: principles, practices, and applications. Cambridge University Press, Cambridge, pp 276-299
  • 46. Hlaváčová Z (2011) Electrical properties of agricultural products. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. encyclopedia of earth sciences series. Springer, Dordrecht. https:// doi.org/10.1007/978-90-481-3585-1_47
  • 47. Huizar-Alvarez R et al (2003) Geologic structure and groundwater flow in the Pachuca-Zumpango sub-basin Central Mexico. Environ Geol 43(4):385-399. https://doi.org/10.1007/s00254-002-0654-4
  • 48. Ibitoye FP et al (2013) Application of geophysical methods to building foundation studies. Int J Geosci. https://doi.org/10.4236/ijg. 2013.49120
  • 49. Ilker Ü, Önder K, Salih S (2020) Real-time electrical resistivity measurement and mapping platform of the soils with an autonomous robot for precision farming applications. Sensors 20:251. https:// doi.org/10.3390/s20010251
  • 50. Isaacson J, Hollinger RE, Gundrum D, Baird J (1999) A controlled archaeological test site facility in illinois: training and research in archaeogeophysics. J Field Archaeol 26(2):227-236. https://doi. org/10.1179/jfa.1999.26.2.227
  • 51. Kim MG, Chung SG, Kim GJ (2001) Permeability characteristics of Pusan clays by using newly developed laboratory permeability apparatus. Intl Symp for 50th Anniversary KSCE Annual Conf/ Civil Expo 2001, 1-3
  • 52. Kvamme KL (2003) NADAG North American database of archaeological geophysics. http://www.cast.uark.edu/nadag/www site supported by the National Park Service's National Center for Preservation Technology and Training (NCPTT)
  • 53. Lai W, Derobert X, Annan P (2018) A review of ground penetrating radar application in civil engineering: a 30-year journey from locating and testing to imaging and diagnosis. Ndt & E Int 96:5878. https://doi.org/10.1016/j.ndteint.2017.04.002
  • 54. MacNae JC (1998) The cavendish test site: A UTEM survey plus a compilation of other ground geophysical data. research in applied geophysics, No. 12, Geophysics Laboratory, Department of Physics, University of Toronto, Canada. https://tspace.library.utoronto. ca/handle/1807/71941
  • 55. Magafu FF, Wu L (2011) Causes of cracks on structures in Ngara-Tanzania. Engineering 2(12):958-961. https://doi.org/10.4236/ eng.2010.212121
  • 56. Marchetti M, Chiappini M, Meloni A (1998) A test site for magnetic detection of buried steel drums. Ann Geophys 41(3):491-498
  • 57. Marchetti M, Cafarella L, Di Mauro D, Zirizzotti A (2002) Ground magnetometric survey and integrated geophysical methods for solid buried waste detection: a case study. Ann Geophys 45(3-4):563-573
  • 58. Marchetti M, Sapia V, Settim A (2013) Magnetic anomalies of steel drums: a review of the literature and research results of the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Ann Geophys 56(1):R0108. https://doi.org/10.4401/ag-6201
  • 59. Meyerhof GG (1974) Ultimate bearing capacity of footings on sand layer overlying clay. Can Geotech J 11:223-229
  • 60. Meyerhof GG, Hanna AM (1978) Ultimate bearing capacity of foundations on layered soils under inclined load. Can Geotech J 15(4):565-572
  • 61. Milsom J (2003) Field geophysics, 3rd edn. University College London John Wiley and Sons Ltd, Chichester
  • 62. Morsy M, Rashed M (2013) Integrated magnetic, gravity, and GPR surveys to locate the probable source of hydrocarbon contamination
  • 63. in Sharm El-Sheikh area, south Sinai. Egypt J Appl Geophysics 88:131-138. https://doi.org/10.1016/j.jappgeo.2012.11.003
  • 64. Mosuro GO, Oloruntola MO, Bayewu OO (2012) SP08 Geophysical Characterization of Subsurface Layers, Soil Competency and Corrosivity at Iganran South-west Nigeria. In: Conference 5th Saint Petersburg International Conference & Exhibition. https://doi.org/ 10.3997/2214-4609.20143753
  • 65. Mutair AA, Suarau AO, Abdulrasoul A (2018) Electrical conductivity method for predicting yields of two yams (Dioscoreaalata) cultivars in a coarse textured soil. Int Soil Water Conserv Res 6:230-36
  • 66. Ninanya K, Huertas J, Ninanya H, Romanel C (2019) Evaluation of the load bearing capacity of piles by numerical, analytical and empirical approaches. In: Frikha W, Kawamura S, Liao WC (eds) New Developments in soil characterization and soil stability. GeoChina 2018. sustainable civil infrastructures. Springer, Cham. https:// doi.org/10.1007/978-3-319-95756-2_6
  • 67. Nordiana MM et al (2018) 2-D electrical resistivity tomography (ERT) assessment of ground failure in urban area. IOP Conf Ser: J Phys 995:012076. https://doi.org/10.1088/1742-6596/995/1/012076
  • 68. Nwankwoala HO, Adiela UP (2016) Geotechnical evaluation of foundation conditions in Igbogene, Bayelsa State. Niger J Geol Geophys 5:6. https://doi.org/10.4172/2381-8719.1000265
  • 69. Omeiza JA, Dogara MD (2018) Aquifer vulnerability to surface contamination: a case of the new millennium city, Kaduna, Kaduna State Nigeria. World J Appl Phys 3(1):1-12. https://doi.org/10. 11648/j.wjap.20180301.11
  • 70. Omeiza JA et al (2022) Effect of an active open dumpsite on the earth’s subsurface and groundwater resource. Asian J Phys Chem Sci 10(2):15-24. https://doi.org/10.9734/ajopacs/2022/v10i230152
  • 71. Omeiza AJ, Lawal KM, Dewu B, Raimi J (2023) Development of geophysical test sites and its impacts on the research and education activities. Bull Eng Geol Environ 82:32. https://doi.org/10.1007/ s10064-023-03076-9
  • 72. Othman AAA (2005) Construed geotechnical characteristics of foundation beds by seismic measurements. J Geophys Eng 2:126-138. https://doi.org/10.1088/1742-2132/2/2/007
  • 73. Pfeifle TW, Das BM (1979) Model tests for bearing capacity in sand. J Geotech Eng, ASCE 105(GT9):1112-1116
  • 74. Poluha B et al (2017) Depth estimates of buried utility systems using the GPR method: studies at the IAG/USP geophysics test site. Int J Geosci 8:726-742. https://doi.org/10.4236/ijg.2017.85040
  • 75. Porsani LL, Almeida ER, Poluha B, dos Santos V (2017) GPR tomographic imaging of concrete tubes and steel/plastic tanks buried in IAG/USP geophysical test site, Brazil. Int J Geosci. https://doi. org/10.4236/ijg.2017.85035
  • 76. Rashed M, Atef A (2015) Mapping underground utilities within conductive soil using multi-frequency electromagnetic induction and ground penetrating radar. Arab J Geosci 8:2341-2346. https://doi. org/10.1007/s12517-014-1358-2
  • 77. Reza T (2010) Application of geophysical methods in agriculture. Aust J Basic Appl Sci 4(12):6433-6439
  • 78. Rhoades JD (1981) Predicting bulk soil electrical conductivity versus saturation paste extract electrical conductivity calibrations from soil properties. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj 1981.03615995004500010009x
  • 79. Romero-Ruiz A, Linde N, Keller T, Or DA (2018) review of geophysical methods for soil structure characterization. Rev Geophys 2019(56):672-697. https://doi.org/10.1029/2018RG000611
  • 80. Rosado-Fuentes A et al (2021) Geophysical characterization, design and construction of the teoloyucan geophysical test site for archaeological and engineering applications, Central Mexico. J Appl Geophys 194:104459. https://doi.org/10.1016/j.jappgeo.2021. 104459
  • 81. Salahaldin SA, Foad AA-U, Sarkawt G, Salar V, Al-Ansari N, Knutsson S (2014) Evaluation of selected site location for subsurface dam construction within Isayi watershed using GIS and RS Garmiyan area, Kurdistan Region. J Water Resour Prot. https://doi.org/10. 4236/jwarp.2014.611092
  • 82. Sauck WA (2009) A decade of lessons learned at a geophysical test site: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, 216-221. https://doi. org/10.3997/2214-4609-pdb.157.sageep024
  • 83. Sauck AW (2021) The Western Michigan University Asylum Lake Geophysical Test Site, Kalamazoo, Michigan, USA:. Western Michigan University : https://wmich.edu/sites/default/files/attac hments/u584/2016/Asylum%20Lk%20Geophys%20Test%20Site. ppt, Accessed 11 Feb 2021
  • 84. Schultz JJ, Grasmueck M, Weger R et al (2012) Detecting buried remains using ground-penetrating radar. J Archaeol Sci 36:235. https://doi.org/10.1002/arp.1461
  • 85. Sika R, Ignaszak Z (2020) Data acquisition procedures for A&DM systems dedicated for the foundry industry. In: Ivanov V et al (eds) Advances in design, simulation and manufacturing II DSMIE 2019 lecture notes in mechanical engineering. Springer, Cham
  • 86. Somers EL, Hargrave LM, Simms EJ (2003) geophysical surveys in archaeology: guidance for surveyors and sponsors. US Army Corps of Engineers @ Engineer Research and Development center https://www.researchgate.net/publication/228813900
  • 87. Telford WM, Geldart LP, Sheriff EE (1990) Applied geophysics, 2nd edn. Cambridge University Press, New York
  • 88. Tibbert M, Carter DO (2008) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton
  • 89. Turki N et al (2019) Agricultural soil characterization using 2D electrical resistivity tomography (ERT) after direct and intermittent digestate application. Arab J Geosci 12:423. https://doi.org/10. 1007/s12517-019-4553-3
  • 90. Ünal I, Kabas Ö, Sözer S (2020) Real-time electrical resistivity measurement and mapping platform of the soils with an autonomous robot for precision farming applications. Sensors 20:251. https:// doi.org/10.3390/s20010251
  • 91. Uzundurukan S, Saplioglu K (2022) Evaluation of the effect of soil bearing capacity on optimum design of retaining wall. Arab Journal of Geosci 15:296. https://doi.org/10. 1007/ s12517-022-09590-6
  • 92. Željko B et al. (2018) Testing of APEX algorithm on TU1208 radargrams from the IFSTTAR geophysical test site. Geophysical Research Abstracts. 20. EGU2018-2360-1
  • 93. Zhu F, Zhang W, Dong W, Sun M (2017) A new calculation method for the bearing capacity of soft soil foundation. Adv Mech Eng 9:10. https://doi.org/10.1177/1687814017732520,-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-07048d20-db12-4b18-bd9b-4527ce55ee8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.