PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Heating Temperature of a Nickel-Chromium Steel Charge Material on the Stability of the Forging Process and the Durability of the Die

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study discusses the issues of low durability of dies used in the first operation of producing a valve type forging from high nickel steel assigned for the application in motor truck engines. The analyzed process of manufacturing the exhaust valve forgings is realized in the coextrusion technology, followed by forging in closed dies. This process is difficult to master, mainly due to elevated adhesion of the charge material (high nickel steel - NCF3015) to the tool substrate as well as very high abrasive wear of the tool, most probably caused by the dissolution of hard carbide precipitates during the charge heating. A big temperature scatter of the charge during the heating and its short presence in the inductor prevents microstructure homogenization of the bearing roller and dissolution of hard precipitates. In effect, this causes an increase of the forging force and the pressures in the contact, which, in extreme cases, is the cause of the blocking of the forging already at the beginning of the process. In order to analyze this issue, complex investigations were conducted, which included: numerical modelling, dilatometric tests and hardness measurements. The microstructure examinations after the heating process pointed to lack of structure repeatability; the dilatometric tests determined the phase transformations, and the FEM results enabled an analysis of the process for different charge hardness values. On the basis of the conducted analyzes, it was found that the batch material heating process was not repeatable, because the collected samples showed a different amount of dissolved carbides in the microstructure, which translated into different hardnesses (from over 300 HV to 192 HV). Also, the results of numerical modeling showed that lower charge temperature translates into greater forces (by about 100 kN) and normal stresses (1000 MPa for the nominal process and 1500 MPa for a harder charge) and equivalent stresses in the tools (respectively: 1300 MPa and over 1800 MPa), as well as abrasive wear (3000 MPa mm; 4500 MPa mm). The obtained results determined the directions of further studies aiming at improvement of the production process and thus increase of tool durability.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
Bibliografia
  • [1] P. Forsberg, P. Hollman, S. Jacobson, Wear 271 (9-10), 2477-2484 (2011). DOI: https://doi.org/10.1016/j.wear.2010.11.039
  • [2] R. Elo, J. Heinrichs, S. Jacobson, Wear 376-377, 1429-1436 (2017). DOI: https://doi.org/10.1016/j.wear.2016.12.060
  • [3] M. Priest, C.M. Taylor, Wear 241, 193-203, (2000). DOI: https://doi.org/10.1016/S0043-1648(00)00375-6
  • [4] H. Jeong, J. Choa, H. Park, Journal of Materials Processing Technology 162-163, 504-511 (2005). DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.101
  • [5] J. Hongchao, L. Jinping, W. Baoyu, F. Xiaobin, X. Wenchao, H. Zhenghuan, Journal of Materials Processing Technology 240, 1-11 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2016.09.004
  • [6] H. Morii, H. Yoshimura. US Patent No. 8881391 B2. (2014).
  • [7] Z. Yuanzhia, Y. Zhimin, X. Jiangpin, Journal of Alloys and Compounds 509 (20), 6106-6112 (2011). DOI: https://doi.org/10.1016/j.jallcom.2011.03.038
  • [8] H.S. Jeong, J.R. Choa, H.C. Park, J. Mater. Process. Technol. 162-163, 504-511 (2005). DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.101
  • [9] D.K. Kim, D.Y. Kim, S.H. Ryu, D.J. Kim, J. Mater. Process. Technol. 113 (1-3), 148-152 (2001). DOI: https://doi.org/10.1016/S0924-0136(01)00700-2
  • [10] B. Painter, R. Shivpuri, T. Altan, J. Mater. Process. Technol. 59, 132-143 (1996). DOI: https://doi.org/10.1016/0924-0136(96)02294-7
  • [11] H.M. Tawancy, Journal of Materials Science 41 (24), (2006). DOI: https://doi.org/10.1007/s10853-006-0990-y
  • [12] P.E.A. Turchi, L. Kaufman, Z.-K. Liu, Calphad 30 (1), 70-87 (2006). DOI: https://doi.org/10.1016/j.calphad.2005.10.003
  • [13] Y.L. Lu, L.M. Pike, C.R. Brooks P.K. Liaw, D. Klarstrom, Scripta Materialia 56 (2), 121-124 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2006.09.011
  • [14] A. Ul-Hamid, A.I. Mohammed, S.S. Al-Jaroudi, H.M. Tawancy, N.M. Abbas, Materials Characterization 58 (1), 13-23 (2007). DOI: https://doi.org/10.1016/j.matchar.2006.03.005
  • [15] F. Bayata, A.T. Alpas. Wear, 480-481, 203943 (2021). DOI: https://doi.org/10.1016/j.wear.2021.203943
  • [16] Z. Shen, J. Zhang, S. Wu, X. Luo, B.M. Jenkins, M.P. Moody, S. Lozano-Perez, X. Zeng, Acta Materialia 226, 117634 (2022). DOI: https://doi.org/10.1016/j.actamat.2022.117634
  • [17] M. Knyazeva, M. Pohl, Metallography, Microstructure and Analysis 2 (5), 343-351 (2013). DOI: https://doi.org/10.1007/s13632-013-0088-2
  • [18] S.S. Hwang, Y.S. Lim, S.W. Kim, D.J. Kim, H.P. Kim, Nuclear Engineering and Technology 45 (1), 73-80 (2013). DOI: http://dx.doi.org/10.5516/NET.07.2012.013
  • [19] L.J. Wang, L.Y. Sheng, C.M. Hong, Materials & Design 37, 349-355 (2012). DOI: https://doi.org/10.1016/j.matdes.2012.01.024
  • [20] R.B. Frank, Advanced Materials and Processes 163 (6), 37-42 (2005).
  • [21] Ch. Hsieh, W. Wu, ISRN Metallurgy 2012 (1), 732471 (2012). DOI: https://doi.org/10.5402/2012/732471
  • [22] G. Golański, M.M. Lachowicz, Engineering Failure Analysis 105, 490-495 (2019). DOI: https://doi.org/10.1016/j.engfailanal.2019.07.024
  • [23] J. Zhou, Z. Sun, P. Kanout’e, D. Retraint, International Journal of Fatigue 103, 309-317 (2017). DOI: https://doi.org/10.1016/j.ijfatigue.2017.06.011
  • [24] R. Elo, J. Heinrichs, S. Jacobson, Wear 376-377 (Part B), 1429-1436, (2017). DOI: https://doi.org/10.1016/j.wear.2016.12.060
  • [25] A. Mühlbauer, History of Induction Heating and Melting, Vulkan-Verlag GmbH, Essen (2008).
  • [26] O. Lucía, P. Maussion, E.J. Dede, J.M. Burdío, IEEE Trans. Ind. Electron 61 (5), 2509-2520 (2014). DOI: https://doi.org/10.1109/TIE.2013.2281162
  • [27] J. Egalon, S. Caux, P. Maussion, M. Souley, O. Pateau, IEEE Transactions on Industry Applications 48 (5), 1692-1699 (2012). DOI: https://doi.org/ 10.1109/TIA.2012.2210176
  • [28] Z. Xiang, B. Ducharne, N.D. Schiava, J.F. Capsal, P.J. Cottinet, G. Coativy, P. Lermusiaux, M.Q.Q. Le, Materials and Design 174, 107804 (2019). DOI: https://doi.org/10.1016/j.matdes.2019.107804
  • [29] M.E. Cano, A. Barrera, J.C. Estrada, A. Hernandez, T. Cordova, Review of Scientific Instruments 82 (11), 114904 (2011). DOI: https://doi.org/10.1063/1.3658818
  • [30] B.J. Yang, A. Hattiangadi, W.Z. Li, G.F. Zhou, T.E. McGreevy, Materials Science and Engineering A 527 (12), 2978-2984 (2010). DOI: https://doi.org/10.1016/j.msea.2010.01.038
  • [31] E. Summerville, K. Venkatesan, C, Subramanian, Material and Design 16 (5), 289-294 (1995). DOI: https://doi.org/10.1016/0261-3069(96)00010-6
  • [32] O. Barrau, C. Boher, R. Gras, F. Rezai-Aria, Wear 255 (7-12), 1444-1454 (2003). DOI: https://doi.org/10.1016/S0043-1648(03)00280-1
  • [33] M. Hawryluk, J. Ziemba, M. Zwierzchowski, M. Janik, Wear 476, 203749 (2021). DOI: https://doi.org/10.1016/j.wear.2021.203749
  • [34] M. Hawryluk, M. M. Lachowicz, M. Janik, J. Ziemba, Z. Gronostajski, Archives of Civil and Mechanical Engineering 21 (151), 1-17 (2021). DOI: https://doi.org/10.1007/s43452-021-00301-8
  • [35] M. Hawryluk, Z. Gronostajski, M. Kaszuba, J. Krawczyk, P. Widomski, J. Ziemba, M. Zwierzchowski, M. Janik, Archives of Metallurgy and Materials 63 (4), 1963-1974 (2018). DOI: https://doi.org/10.24425/amm.2018.125131
  • [36] H.S. Jeong, J.R. Cho, H.C. Park, Journal of Materials Processing Technology 162-163, 504-511 (2005). DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.101
  • [37] T.M. Ivansju, J. Epp, H.W. Zoch, A. de Silva Rocha, Materials Research 22 (5), (2019). DOI: https://doi.org/10.1590/1980-5373-MR-2019-0230
  • [38] Y.C. Lin, M.S. Chen, J. Zhong, Computational Materials Science 43 (4), 1117-1122 (2008). DOI: https://doi.org/10.1016/j.commatsci.2008.03.010
  • [39] A. Polkowska, S. Lech, P. Bała, W. Polkowski, Materials Characterization 171, 110737 (2021). DOI: https://doi.org/10.1016/j.matchar.2020.110737
  • [40] L.J. Wang, L.Y. Sheng, C.M. Hong, Materials & Design 37, 349-355 (2012). DOI: https://doi.org/10.1016/j.matdes.2012.01.024
  • [41] Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, D. Yi, Journal of Alloys and Compounds 509 (17), 5242-5249 (2011). DOI: https://doi.org/10.1016/j.jallcom.2011.02.009
  • [42] K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Kozel, L. Gondek, Journal of Alloys and Compounds 698, 673-684 (2017). DOI: https://doi.org/10.1016/j.jallcom.2016.12.252
  • [43] R. Rahimi, O. Volkova, H. Biermann, J. Mola, Advanced Engineering Materials 21 (5), (2018). DOI: https://doi.org/10.1002/adem.201800658
  • [44] V. Kostoj, J.D. Mithieux, T. Fröhlich, Solid State Phenomena 172-174, 426-431 (2011). DOI: https://doi.org/10.4028/www.scientific.net/SSP.172-174.426
  • [45] G.R. Kegg, J.M. Silcock, Metal Science Journal 6 (1), 47-56 (2013). DOI: https://doi.org/10.1179/030634572790445966
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06fd6fb6-41c3-41d1-bde5-bf483a0a76a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.