PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Evaluation of Functional Insoles for Protective Footwear Under Simulated Use Conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the work was to study the properties of functional insoles for protective footwear using an original methodology by simulating the dynamic real-life conditions. Two insole variants were examined; both are made from a three-layer composite with the middle layer being a polypropylene melt-blown nonwoven. The variants differed in terms of the presence or absence of a superabsorbent polymer (SAP) and a biocide in the middle layer. Insole samples were subjected to pressure and examined in terms of the adsorption and desorption of acidic and alkaline liquids, followed by tear strength experiments. In addition, the insoles were placed in protective footwear and the microclimate existing inside the resulting system was determined using T/RH sensors by means of three complementary methods: under controlled climatic conditions, on a thermal foot model, and on human subjects. The results clearly indicate that insoles containing SAP are more effective than those without SAP in terms of both hygienic and mechanical properties.
Rocznik
Strony
26--34
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, ul. Wierzbowa 48, 90-133 Łódź, Poland
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, ul. Wierzbowa 48, 90-133 Łódź, Poland
  • Lodz University of Technology, Institute of Material Science of Textiles and Polymer Composites, Centre of Advanced Technologies of Human-Friendly Textiles 'Pro Humano tex', ul. Żeromskiego 116, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Material Science of Textiles and Polymer Composites, Centre of Advanced Technologies of Human-Friendly Textiles 'Pro Humano tex', ul. Żeromskiego 116, 90-924 Łódź, Poland
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, ul. Wierzbowa 48, 90-133 Łódź, Poland
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, ul. Wierzbowa 48, 90-133 Łódź, Poland
Bibliografia
  • [1] Akbar-Khanzadeh, F., Bisesi, M. S., Rivas, R. D. (1995). Comfort of personal protective equipment. Applied Ergonomics, 26(3), 195–198. doi: 10.1016/0003-6870(95)00017-7.
  • [2] Hole, L. G. (1973). Sweat disposal from footwear and health and hygiene of foot skin. Journal of the Society of Cosmetic Chemists, 24, 43–63.
  • [3] Regulation (EU) 2016/425 of the European Paliament and of the council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC. 2016.
  • [4] Europejska strategia rozwoju do 2020 r. pt.: Long Term Personal Protective Equipment Perspective of the European Union’. Jun. 07, 2020, [Online]. Web site: https://ec.europa.eu/growth/sectors/mechanical-engineering/personal-protective-equipment_en.
  • [5] Guidance for the selection, use and maintenance of safety and occupational footwear and other personal protective equipment offering foot and leg protection. Technical Committee.
  • [6] Scheffer, M. (2012). Long term PPE perspective. HSME Magazine Health & Safety Middle East., 19, 25–33.
  • [7] Holmer, I. (2004). Thermal manikin history and applications. European Journal of Applied Physiology, 92(6), 614–618. doi: 10.1007/s00421-004-1135-0.
  • [8] Kuklane, K., Holmér, I., Anttonen, H., Burke, R., Doughty, P. (2005). Inter-laboratory tests on thermal foot models. Elsevier Ergonomics Book Series, 3, 449–457.
  • [9] Frederick, E. C. (1984). Physiological and ergonomics factors in running shoe design. Applied Ergonomics, 15(4), 281–287. doi: 10.1016/0003-6870(84)90199-6.
  • [10] Irzmańska, E. (2016). The microclimate in protective fire fighter footwear: Foot temperature and air temperature and relative humidity. Autex Research Journal, 16(2), 75–79. doi: 10.1515/aut-2015-0030.
  • [11] Irzmańska, E. (2015). The impact of different types of textile liners used in protective footwear on the subjective sensations of firefighters. Applied Ergonomics, 47, 34–42. doi: 10.1016/j.apergo.2014.08.013.
  • [12] Yang, Y., Hao, X. M., Hao, X., Li, H. W., Feng, X. X. (2012). Investigate on moisture absorption/desorption of shoe material containing hemp fiber. Advanced Materials Research, 627, 49–52. doi: 10.4028/www.scientific.net/AMR.627.49.
  • [13] Irzmańska, E., Brochocka, A. (2014). Influence of the physical and chemical properties of composite insoles on the microclimate in protective footwear. Fibres & Textiles in Eastern Europe, 22, 5(107), 89–95.
  • [14] Mitsui, M., Yoshida, K., Ishii, Y., Shirai, K., Chonan, Y., Okamura, H. (1999). Hygienic study on shoes part 1 : Effect of shoe materials on wear comfort and microclimate between shoes and skin. Journal of the Japan Research Association for Textile End-Uses, 40(5), 333–341. doi: 10.11419/senshoshi1960.40.333.
  • [15] Gulbiniene, A., Jankauskaitė, V., Kondratas, A. (2011). Investigation of the water vapour transfer properties of textile laminates for footwear linings. Fibres & Textiles in Eastern Europe, 19, 3(86), 78–81.
  • [16] Majchrzycka, K. (2017). Wykorzystanie polimerów superabsorpcyjnych w materiałach włókienniczych. Chemical Review, 1(10), 122–125. doi: 10.15199/62.2017.10.20.
  • [17] Irzmańska, E., Brochocka, A. (2017). Modified polymer materials for use in selected personal protective equipment products. Autex Research Journal, 17(1), 35–47. doi: 10.1515/aut-2015-0040.
  • [18] Irzmanska, E., Majchrzycka, K., Adamus-Włodarczyk, A., Brochocka, A. (2019). Evaluation of the mechanical parameters of ultrasonically welded textile composite structures for protective footwear. Fibres & Textiles in Eastern Europe, 27, 3(135), 99–105. doi: 10.5604/01.3001.0013.0821.
  • [19] PN-EN 13726-2:2005 Metody badania bezpośrednich opatrunków ran - Część 2: Transmisja pary wilgoci przez opatrunki z folią półprzepuszczalną.
  • [20] EN ISO 20345:2011 Personal Protective Equipment – safety footwear. 2011.
  • [21] PN-EN ISO 105-E04:2011 (Tekstylia. Badania odporności wybarwień. Część E04: Odporność wybarwień na działanie potu)’.
  • [22] Petrulyte, S., Baltakyte, R. (2009). Liquid sorption and transport in woven structures. Fibres & Textiles in Eastern Europe, 17, 2(73), 39–45.
  • [23] PN-EN 1392:2007 Kleje do skóry i materiałów obuwniczych -Kleje rozpuszczalnikowe i dyspersyjne -Badanie wytrzymałości połączenia w określonych warunkach.
  • [24] Irzmańska, E. (2014). Case study of the impact of toecap type on the microclimate in protective footwear. International Journal of Industrial Ergonomics, 44(5), 706–714. doi: 10.1016/j.ergon.2014.07.006.
  • [25] PN-EN ISO 20344:2012 - Środki ochrony indywidualnej – Metody badania obuwia.
  • [26] Bogusławska-Bączek, M., Hes, L. (2013). Effective water vapour permeability of wet wool fabric and blended fabrics. Fibres & Textiles in Eastern Europe, 1(97), 67–71.
  • [27] Adomaviciene, M., Schwartz, A., Stanys, S. (2013). Influence of liquid nature on wetting behaviour of an inclined fibre. Fibres & Textiles in Eastern Europe, 15, 5(6), 67–71.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06fb9c7c-95ee-44e2-96d4-7e58837bed65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.