PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD analysis of hydrodynamic lubrication of slide conical bearing with consideration of the bearing shaft and sleeve surface roughness

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work is shown the result of CFD simulation of hydrodynamic conical bearing lubrication with consideration of the effect of the bearing shaft and sleeve surface roughness. The oil flow in a bearing lubrication gap largely depend on the condition of the cooperating surfaces of a bearing. Surface irregularities are formed already at the manufacturing process and furthermore the quality of the surface may change during operation of a bearing. In this work, as a parameter describing surface condition, the Ks roughness height parameter was taken (i.e. sand-grain roughness height). The hydrodynamic pressure distribution in lubrication gaps of investigated bearings were calculated by using the commercial CFD software ANSYS Academic Research for fluid flow phenomenon (Fluent). Calculations were conducted for bearings without misalignment. The Ostwald-de Waele model for non-Newtonian fluids was adopted in this simulation. The coefficients of Ostwald-de Waele relationship were determined by application of the least squares approximation method and fitting curves described by this model to the experimental data, obtained for some motor oils, presented in previous work. The calculated hydrodynamic pressure distributions were compared with the data obtained for corresponding bearings, but assuming that bearings have smooth surfaces and there is no slip on surfaces. This paper presents results for bearings with different rotational speeds and of different bearing gap heights.
Twórcy
autor
  • Gdynia Maritime University, Faculty of Marine Engineering Morska Street 81-87, 81-225 Gdynia, Poland tel.:+48 58 6901304, fax: +48 58 6901399
Bibliografia
  • [1] Adams, T., Grant, C., Watson, H., A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-grain Roughness, International Journal of Mechanical Engineering and Mechatronics, Vol. 1, Is. 1, 2012.
  • [2] Basti, D. P., Effect of Surface Roughness and Couple Stresses on Squeeze Films between Curved Annular Plates, ISRN Tribology, Article ID 640178, Vol. 2013, 2013.
  • [3] Czaban, A., The Influence of the Viscosity of Selected Motor Oils, Solid State Phenomena, Temperature and Shear Rate on, Vol. 199, pp. 188-193, 2013.
  • [4] Czaban, A., Frycz, M., Horak, W., Effect of the Magnetic Particles Concentration on the Ferro-Oil’s Dynamic Viscosity in Presence of an External Magnetic Field in the Aspect of Temperature Changes, Journal ofKONES, Vol. 20, No. 2, pp. 55-60, 2013.
  • [5] Chiang, H. L., Chou T. L., Hsu, C. H., Hsu, C. H., Lin, J. R., Surface Roughness Effects on the Dynamic Characteristics of Finite Slider Bearings, Journal of C.C.I.T., Vol. 34, No. 1, 2005.
  • [6] Miszczak, A., Analiza hydrodynamicznego smarowania ferrociecza poprzecznych łożysk ślizgowych, Fundacja Rozwoju Akademii Morskiej, Gdynia 2006.
  • [7] Miszczak, A., Czaban, A., Surface Topography of Slide Journal Bearings, Journal of KONES Powertrain and Transport, Vol. 18, No. 3, 2011.
  • [8] Miszczak, A., Czaban, A., Labuda, W., Surface Topography of Operated Slide Journal Micro-Bearings Used in Computer Fans, Journal of KONES Powertrain and Transport, Vol. 19, No. 4, 2012.
  • [9] Nowak, Z., Wierzcholski, K., Flow of a Non-Newtonian Power Law Lubricant trough the Conical Bearing gap, Acta Mechanica 50, pp. 221-230, 1984.
  • [10] Ramirez-Gonzalez, P. V. et al., Non-Newtonian Viscosity Modeling of Crude Oils - Comparison Among Models, Int J Thermophys, 30:1089-1105, 2009.
  • [11] Raven, F. H., Wehe, R. L., Influence of shaft deflection and surface roughness on load- carrying capacity of plain journal bearings, NASA Technical Documents, Technical Note D-4, Document id: 19890068319, Washington 1959.
  • [12] Shukla, S. D., Deheri, G. M., Surface Roughness Effect on the Performance of a Magnetic Fluid Based Hyperbolic Slider Bearing, International Journal of Engineering Research and Applications, Vol. 1, Is. 3, pp. 948-962.
  • [13] Szeri, A. Z., Fluid film lubrication. Theory & Design, Cambridge University Press, Cambridge, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06f968b2-29fb-41b3-a884-c160e67e8e68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.