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Elastic hysteretic damping is defined as the dissipation of energy at a rate that
is weakly dependent on frequency of vibration. In this article, we propose that the
elastic hysteretic damping can be achieved by a simple modification to the viscous
damping model. The proposed modification is based on computing an instantaneous
correction factor that recursively depends on the state variables of the system. This
correction factor is related to the rate by which the velocity changes with respect to
the displacement. The new model compares quite favourably with the other existing
solutions in the time-domain and differences between the solutions become evident
for higher damping ratios. It is found that the new model predicts consistently the
weak variation in the loss factor as a function of frequency. In addition to its simple
mathematical formulation, the proposed model is superior to the existing solutions in
that it does not require knowledge of the past history of motion neither the knowledge
of the excitation frequency and is extensible to any type of loading. Various aspects
pertaining to the linearity of the proposed approach are finally discussed.
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1. Introduction

Damping, which is a measure of energy dissipation during vibration, is
an essential component to the understanding of dynamic behaviour of any struc-
tural system and vital for the design of earthquake-resistant structures [1, 2].
Generally speaking, there are two types of damping: the first is the frequency-
dependent damping, so called viscous damping, and the second is the frequency-
independent damping, so called hysteretic damping. While the viscous damping
is mathematically simple and easy to implement in dynamic analysis, it is the
least accurate and does not represent the realistic behaviour of most of struc-
tural assemblies or materials. In viscous damping, the dissipated energy per cycle
scales linearly as a function of the frequency of vibration. Generally, most ma-
terials and structures dissipate energy via hysteretic behaviour, i.e. with very
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weak dependence on the magnitude of vibration frequency [3]. However, such
behaviour is generally complex in terms of its mathematical models, sometimes
requiring convolution integrals that are difficult to generalize into structures of
multi-degrees-of-freedom.

Mechanisms for hysteretic energy dissipation include elastic hysteresis, which
is associated with recoverable deformations and internal friction among other
factors, and of plastic hysteresis, which is associated with yielding and other
mechanisms that relate to non-recoverable deformations and internal damage of
materials or components. In our paper we focus on elastic hysteresis with the
assumption of constant stiffness and no damage mechanisms.

The elastic hysteretic damping idea was first postulated by Kimball and
Lovell [4] based on their experimental observation. Their idea was that the
viscous damping model has to be modified so that the resulting dissipated energy
is independent of the frequency of motion. The change was introduced by Collar,
as mentioned in Bishop and Neumark [5, 6], into the time-domain equation
of motion by replacing the viscous damping coefficient by another one that is
inversely proportional to the harmonic forcing frequency. This tempted others
[7–11] to consider the equivalent frequency-domain equation of motion which
then appeared to have a complex stiffness term. This led others to consider
the complex-stiffness model as equivalent to the hysteretic model for all cases
including the free vibration case [12, 7].

This kind of generalization caused a debate whether the structural hysteresis
model, with its complex form, violates the causality principle or not. According
to the work of Caughey and Crandall [9, 10, 13], the structural hysteresis
model is non-causal, in a sense that when it is subjected to a Dirac-delta δ(t) type
of impulse excitation at time t = 0, it generates response even for t < 0. This
supposition caused many authors that followed to try to “correct” for this non-
causality effect [14–17] Some authors manipulated Hilbert transforms to achieve
causality [14, 18], or used convolution integrals of the past history of motion to
achieve causal hysteretic damping [19–21]. However, other researchers, such as
Scanlan [22], maintain that the non-causality is a result of the wrong applica-
tion of the model out of its context and due to the assumption that the damping
ratio is constant and real. Recently, Bobrovnitskii [23], has presented a rigor-
ous mathematical proof that the complex stiffness model, contrary to common
belief, does satisfy causality. The proof necessitates that the Dirac impulse load,
and in fact any load, should be constructed such that at t < 0 it should not exist
for it to qualify as a physical load. However, the same proof procedure showed
that such a system is Lyapunov unstable.

This confusion on causality encouraged other researchers to develop more
phenomenological hysteresis models. This family of models, called the Bouc-
Wen group of models [24–26], rely on internal non-physical, “state”, parameters
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for damping and also mix the energy dissipation due to stiffness nonlinearities,
including the plastic degradation, along with the elastic hysteretic energy dissi-
pation. Such models require pre-calibration for the case where it is intended to
be used, which, in effect, makes them a cumbersome and ad-hoc, but effective
solution to the problem of hysteresis nonlinearity.

Other models, such as the quasi-hysteretic model [15, 27] are based on cumu-
lative correction of the dissipated energy at each time step based on the entire
previous history of motion. In form, they look similar to the models that rely on
Hilbert transforms for causality. Such a model can be tedious for computations
and maybe impossible to apply in systems of multiple-degrees of freedom.

Other models revert to relating hysteresis force to be a dissipative frictional
force that is proportional to displacement but in phase with velocity, such as
Reid’s model [12]. These models produce discontinuity in the internal force.
Others tried to correct for such discontinuity [27, 28] by trying to “smoothen”
the damping force by inserting gradual jump in the stiffness for a smoother
transition function, thus in turn resulting in complicated models.

As seen from the brief review aforementioned, it is favourable to have a re-
alistic and simple model in the time-domain, akin to the viscous model, that
produces the hysteretic behaviour without the need for “complex” stiffness
approach, neither for the integral transforms, nor non-physical internal para-
meters.

In this paper, we propose a simple modification to the viscous damping model
such that the resulting behaviour is hysteretic. We propose to achieve this by
applying a correction to the viscous model. The correction factor is computed
based on the system local state variables (velocity, and displacement) at each
time-step. However, before presenting the proposed modification, it is necessary
to understand the development of the structural hysteresis model in its realistic
context, then the various solutions by many researchers are presented whereby
comparison of the models ensue.

2. The structural hysteresis model

The structural hysteresis model was initially proposed by Kimball and
Lovell [4], Kussner [29, 30] and further developed by Kassner [31] for
the study of fluttering effect in wings of planes. Bishop and Neumark [5, 6]
presented a realistic, and in our opinion essential, derivation of the structural
hysteresis damping model starting with the viscous model. This derivation is
essential since it puts the hysteresis model in its real context and facilitates
its understanding. This is summarized below from [5] and [6] for the sake of
completeness and to understand the realistic meaning of the complex stiffness
hysteretic model.
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Take the equation of motion for a single degree of freedom (SDOF) model
with viscous damping:

(2.1) kx+ cẋ+mẍ = F

where c is the viscous damping coefficient, k is the structural stiffness andm is its
mass. The term FS = kx corresponds to the spring restoring force and the term
FD = cẋ to the damping force. When the excitation force is F = F0 sin(ωt), the
steady state solution has the form x(1) = x0 sin(ωt+θ), and when F = F0 cos(ωt),
the steady state solution has the form x(2) = x0 cos(ωt + θ). Evidently the two
solutions are at a phase difference of π/2. If the excitation force is the vectorial
sum F0[cos(ωt) + i sin(ωt)] = F0e

iωt, where i =
√
−1 is the imaginary unit, then

the steady-state solution is simply the superposition (which is true for constant
coefficients of Eq. (2.1)) x = x(1) + x(2) = x0e

i(ωt+θ). Now substituting the
derivative for ẋ = iωx in the equation of motion gives:

(2.2) kx

[

1 +
iωc

k

]

+mẍ = F = F0e
iωt.

Since this equation is merely identical to the original viscously damped system
above (Eq. (2.1)), the dissipated energy per cycle in Eq. (2.2) is equal to

∮
FD dx,

thus:

(2.3) E =

∮

cẋdx = πωcx2
0.

This dissipated energy is proportional to the driving frequency. To enforce the
condition that the dissipated energy is independent of frequency, the fundamental
assumption that ωc = gk is made, with g being the loss factor. Upon substitution
into Eq. (2. 2) gives the conventional form of the complex stiffness damping model
FS + FD = kx(1 + ig),where the loss factor g is seen to represent the ratio of
the “complex” to the “real” stiffnesses. The dissipated energy per cycle in the
hysteretic model can then be written as:

(2.4) E =

∮

ikxg dx = πkgx2
0.

The assumption ωc = gk is then used to define a “modified version” of a viscous
damping that is hysteretic in its manifest behaviour, i.e.:

(2.5) kx+
gk

ω
ẋ+mẍ = F.

With FD = gk
ω ẋ in this case. Note that this definition of hysteretic damping

was essentially established based on a steady-state solution of a forced vibra-
tion with constant energy dissipation rate per cycle and constant driving fre-
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quency ω. However, allured by its ability to render the viscously dissipated en-
ergy frequency-independent, the assumption ωc = gk is still used by a plethora
of researchers [32, 10, 12] for free vibrations through its “corrected” version with
the term kx(1+ ig) being used as the structural hysteresis model standing on its
own. As previously discussed in the introduction, this caused a confusion later on
about the meaning of the imaginary number in the time domain in an equation
that is supposedly meant to describe real behaviour [33, 34]. On the other hand,
certainly, the use of the original “viscous” model for cases of free vibration (i.e.
Eq. (2.5) with F = 0) poses severe ambiguity regarding the value of ω.

In the next section, several solutions to the original corrected viscous and
hysteretic models are mentioned in particular the free vibration case, and the
differences and confusions between them are highlighted. Then we propose an
alternate view on this issue by relating to the essence of how the hysteretic model
has emerged in the first place.

2.1. Collar’s solution as described by Neumark and Bishop

According to Neumark and Bishop [5, 6], the solution to Eq. (2.5) with
a harmonic excitation F = F0 cos(ωt+ θ) is straightforward and similar to that
of Eq. (2.1). In a manner similar to the superposition of solutions as described
earlier above, the steady-state solution for the forced vibration is assumed to
have the form x = x0 cos(ωt + θ), where by imposing the solution on Eq. (2.1)
and using ωc = gk, we have:

(2.6) x0 =
F0
k

√

(1 − (ω/ωn)2)2 + g2
cos(ωt+ θ) and tan(θ) =

g

1 − (ω/ωn)2
.

Similarly, for the case of free vibration, the transient solution is assumed
to be a decaying function similar to that of viscously damped motion: x =
x0,fe−at cos(ω(Col)t + θ). This solution is imposed on Eq. (2.5), and then the
assumption ω(Col)c = gk is utilized again. This gives

(2.7)
a = ωn

√

1 −
√

1 − g2

2
and ω(Col) = ωn

√

1 +
√

1 − g2

2
,

x0,f =
x0

cos(θ)
and tan(θ) =

v0 + ax0

−ωx0
.

Where x0 and v0 are the initial displacement and velocity, respectively. As it is
clearly seen, this solution predicts a decrease in the damped natural frequency,
which is confirmed by experiments. However, this reduction is constant all over
the entirety of motion, which is something not yet confirmed by experimentation.
On the contrary, some experiments on the free vibration of small metal cantilever
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beams provide evidence that neither the frequency of motion nor the damping
ratio is constant all over the motion [35, 36].

This solution assumes linearity of the equation of motion which necessitates
the damping coefficient (gk/ω) to be a constant throughout the motion.

2.2. Solution by Neumark for free vibration

Neumark [6] agrees with the previous solution for the case of forced vibra-
tion. However, in the case of free vibration, there is an ambiguity in defining the
frequency term in the Eq. (2.5). Also, the validity of the assumption ωc = gk
is questioned since the dissipated energy in the viscously damped system for
free vibration can no longer be measured by Eq. (2.3). Neumark proposed a so-
lution to this problem based on a “mean energy” concept. In his approach, he
imposed the criteria that the lost energy be frequency-invariant by equating the
mean value of the dissipated energy per cycle in a decaying motion to that of an
equivalent viscously dissipated energy.

Assuming the free decaying vibration motion resulting from Eq. (2.5) is de-
scribed as x = x0e

−at sin(ωt+ θ), the dissipated energy per cycle in a viscously
damped system becomes:

(2.8) E =

∮

cẋdx =
1

4
cx2

0(1 − e−4πa/ω)

(
ω2

a
− ω sin(2θ) + 2a sin2(θ)

)

.

Of which the mean dissipated energy per cycle is

(2.9) Em = (πcωx2
0)

(1 − e−4πa/ω)

4πa/ω

(

1 +
a2

ω2

)

.

Now the fundamental assumption taken by Neumark is to equate this mean value
of dissipated energy to the dissipated energy of the hysteretic model on the mean
value:

(2.10) Em = πkgx2
m.

Thus requiring that cω = kgN where N is a coefficient resulting from equating
Eq. (2.9) to Eq. (2.10); x2

m is the square of the mean value of the response, and
is taken to be equal to the arithmetic average of the squares of the amplitudes
at the beginning and end of a cycle.

The solution by Neumark captures in an analytical form the hysteretic damp-
ed frequency of the free vibration as:
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(2.11)

ω(Neu) =
4πωn

√

16π2 + [ln((1 + πg)/(1 − πg))]2
,

a =
ln((1 + πg)/(1 − πg))

√

16π2 + [ln((1 + πg)/(1 − πg))]2
,

N =
(8π/g) ln((1 + πg)/(1 − πg))

16π2 + [ln((1 + πg)/(1 − πg))]2
.

This solution is only valid for g < 1/π and as seen, it also predicts constant
value for the damped frequency over the entirety of motion. Further, this solution
produces a decrease in the natural frequency due to damping which conforms
to experimental observations, which puts it in the same trend like the previous
solution.

2.3. Solution by Chen et al.

In this solution Chen et al. [37] realize that the frequency of the response un-
der free vibration may not remain constant throughout the motion. Rather, they
postulate that it alternates between two values depending on its state (i.e., the
combination of response and its derivative). This is justified by the authors [37]
through saying that the damping force must be in-phase with the velocity. When
the response x and its derivative ẋ are in the first or the third quadrants of the
phase plane, i.e. xẋ > 0 then ω = ωn

√
1 + g, and if they are in the second or

fourth quadrant, i.e. xẋ < 0 then ω = ωn
√

1 − g. Using this understanding,
the authors combined the “traveling time” for the four quadrants and used it to
compute an overall “effective” natural frequency ωCh for a complete cycle. This
effective natural frequency is nothing more than a sort of averaging of the two
limits of the damped frequency. Later on, the authors assumed this “effective”
natural frequency to remain constant throughout the motion.

By this approach, the solution for the free vibration of hysteretic damping
is:

(2.12)

x = Z

[

x0 cos (ω(Ch)t)+
v0
ω

sin(ω(Ch)t)

]

,

ω(Ch) = 2ωn

( √

1 − g2

√
1 − g +

√
1 + g

)

,

Z =

(
1 − g

1 + g

) ωt
2π

.

Similar to the previous solutions, this one generally predicts slightly more sig-
nificant reduction in the damped natural frequency and it tends to overesti-
mate the response values when compared to all other solutions. The interesting
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thing about this solution is that it postulates that the damped frequency itself
may oscillate between two limits depending on reversal of motion or reversal of
speed direction. However, they maintain that the damping ratio remains con-
stant throughout the motion. It is worth mentioning that due to the lack of
high quality testing on this kind of behaviour, it is impossible to judge such
a postulate.

2.4. Solution by Ribeiro et al.

Ribeiro et al. [16, 38, 39] proposed to look at Eq. (2.2) from a purely mathe-
matical perspective. Ribeiro et al. speculated that the solution must be complex
by necessity and the physical response of the system should be the real part of
x(t). As shown in Ribeiro et al. [16], the solution is given by (after discarding
the unstable part of the solution):

(2.13) x(t) = Ce−ωnateωnbt

where C is a complex constant and a and b are given as:

(2.14) a =

√

−1 +
√

1 + g2

2
and b =

√

1 +
√

1 + g2

2
.

The solution is done by imposing imaginary as well as real initial conditions,
which upon discarding the imaginary solution, the real “observable” solution is:

(2.15) x(t) = e−ωnat

(

x0 cos(ωnbt) +
v0 + ωnax0

ωnb
sin(ωnbt)

)

.

This solution produces a damped frequency of the hysteretic response slightly
larger than the viscously damped frequency. Also it results in a storage modulus
that increases with frequency.

Maia [33] investigated the validity Ribeiro et al. solution in terms of causality
when subjected to a Dirac impulse, and came to a conclusion that the solution
is inconsistent in a sense that it does not solve the initial problem, but rather
only the real part of it. Maia tried to provide a remedy to this inconsistency.

It is clear from the previous studies that the habit of discarding “imaginary”
items simply because they are non-real, causes further confusion in the inter-
pretation of the results when using the complex-stiffness model for hysteresis.
Also, all these solutions require prior knowledge of either an external forcing fre-
quency, or the eigenfrequency of the SDOF system, making them cumbersome
and impractical to apply in practice.

Furthermore, these models assume constant damping through the entire mo-
tion, which is a necessity in order to use superposition principles and frequency-
domain techniques for solving the equation of motion. This supposition is found
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inconsistent with experiments [36] and may lead to inconsistent consequences,
mainly the non-causality issue [12] when transferring the equation of motion to
the frequency-domain. Therefore, it is wise to develop another understanding of
the hysteresis phenomenon away from the use of complex numbers, and does not
necessitate the constancy of the damping term gk/ω.

3. Proposed solution

In this approach, a constitutive model is developed on the basis of the in-
stantaneous state of a SDOF vibrating system, which is applicable regardless of
whether a vibration is forced or free, or harmonic, periodic or otherwise, and
without prior knowledge of the external excitation and its parameters1.

Going back to the origins of the hysteresis damping model as engineered by
Kussner [29, 30] and Kassner [31], the value of ω in the equation of motion
of Eqs. (2.2) and (2.5) is a result of a steady-state solution of a forced vibration.
Also, inspired by the idea that the natural frequency in the hysteretic model
need not remain constant, as shown by Chen et al. [37], and the need to arrive
at a frequency-independent hysteretic behaviour a new model is proposed for
hysteresis damping based on a simple modification to the viscous damping model.

In the viscous model, the dissipated energy per cycle scales up with the
amount of the driving frequency. This indicates that for the dissipated energy per
cycle to remain constant, there should exist an internal mechanism that works
in opposite effect to the driving frequency. This is equivalent to defining the
viscous damping property to be inversely proportional to the driving frequency,
i.e. the same assumption taken by Collar, Bishop and Neumark (i.e. ωc = gk).
At the same time, we note that in case of free vibration there is no such external
“driving” frequency. Also, even in the context of a forced vibration other than
a simple harmonic excitation, a single constant driving frequency may not be
defined.

Instead, since the viscous damping force depends on the velocity, it is con-
ceivable to think of the hysteretic damping as somehow inversely proportional
to the rate at which the velocity changes with respect to the displacement re-

1Even though the model describes instantaneous states, the entire concept of hysteretic
damping and of related metrics such as the loss factor g is defined on the concepts of “oscil-
lation” and “energy lost per cycle”, so at times references will be made to magnitudes such
as “amplitude”, (pseudo)“frequency” and “loss factor”, even though none of these are defined
outside of periodic motion. As we explain in the model, we make use of an approximation of
the instantaneous state of the system by a harmonic oscillation and in that context “ampli-
tude”, “frequency” and “loss factor” may be used validly and without loss of the generality of
the model. This also helps to maintain compatibility with the terminology established in the
literature. The reader is cautioned to avoid any confusion that might arise from such use of
terminology and is redirected to Sections 1–2, where the matter has been discussed at length.
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sponse, i.e.: dv(t)
dt /x(t). Therefore, let the instantaneous response x(t) within the

time interval [t, t + δt] be a part of an elementary harmonic oscillation, i.e. we
approximate x(t) within a small vicinity of t as a harmonic oscillation:

(3.1) x(t) = x̃ins sin(ωinst+ θins), t ∈ [t, t+ δt]

where ωins is the frequency of this approximate harmonic oscillation and will
thereafter be called “instantaneous correction factor”, or “instantaneous pseudo-
frequency” of the response. “Instantaneous” denotes the transient nature of this
approximation and “pseudo” the fact that, in principle, the factor ωins does not
represent a real frequency of the response2, per se, and hence may not readily
admit a physical meaning. At the same time, it is interesting to note that, if the
response is purely harmonic (as e.g. in a steady-state solution to a harmonic ex-
citation), this factor will be physically identical to the frequency of the response.
Using Eq. (3.1), we can calculate:

(3.2)
rate of change of velocity

displacement
=

d
dtv(t)

x(t)
=

d2

dt2
x(t)

x(t)
= −ω2

ins.

The instantaneous pseudo frequency defined in Eq. (3.2) is used as a correc-
tion factor to the viscous damping model. This factor is computed from the real
response at each time step using the definition in Eq. (3.2) using the immedi-
ately prior (known) state, i.e. the displacement response and its backward time
differences. The damping force of the thus “corrected” viscous damping model
(Eq. (2.5)) can then be written as:

(3.3) FD = g
k

ωins
ẋ.

The coefficient g, which can be readily understood to correspond to the loss
factor, can be determined by imposing that the viscously dissipated energy per
cycle (if an entire cycle were allowed to complete) is constant:

(3.4) E =

∮

FD dx =

2π/ωins∫

0

FD dx = πkgx̃2
ins = 2πg

1

2
kx̃2

ins.

The value of 1
2kx̃

2
ins represents the maximum restoring “elastic” energy in the

system at that cycle. From Eq. (3.4) we get the known expression for the loss
factor [40]:

(3.5) g =
E

2π 1
2kx̃

2
ins

.

2In fact, there is no requirement that the response being approximated must be harmonic
or even periodic.
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Notice that this approach produces a pure frequency-independent hysteresis be-
haviour if the entire response is purely harmonic, which would be the result from
a steady-state forced vibration under harmonic loading. In such a case, the cal-
culated instantaneous pseudo frequency becomes equal to the forcing frequency.
This solution bears resemblance in terms of the line of thinking to the solution
proposed by Neumark [6]. In his solution, Neumark calculated the “corrected”
frequency of motion by equating the energy loss per cycle of that of decaying hys-
teretic motion to that of decaying viscous motion. Thus, the Neumark solution
is based on “integral” equivalence between viscous and hysteretic models. Our
approach assumes the same line of thinking but instead of looking at the energy
per cycle, we look at the “instantaneous” frequency of an equivalent harmonic
response that makes the energy loss in the hysteretic motion invariant. Thus
our approach is based on a somewhat “differential” equivalence between viscous
and hysteretic damping. We insist on assuming the instantaneous motion to be
equivalent to a harmonic because this is the original basis on which the whole
hysteretic model was crafted by Kussner and used later on by Neumark and
Bishop. Also, this is consistent with experimental observation that the loss fac-
tor remains nearly constant under varying harmonic excitation as demonstrated
by Kimball and Lovell [4] and others later on.

4. Recurrence solution and convergence

The proposed approach assumes continuous updating of the viscous factor
g k

ωins
in the damping force by a correction factor 1

ωins
using a differential estima-

tor that depends on the local solution at that instant. This leads to a nonlinear
recursive dependency between 1

ωins
and the response x(t). Therefore, an iterative

scheme can be employed numerically as follows: at each time increment “ti”, the
equation of motion is solved assuming a pseudo-viscous damping model with
damping force as in Eq. (3.3) and assuming an initial value of (g k

ωins
)1i , where

the superscript 1 indicates iteration 1. This produces a response x1
i (t) (at in-

crement ti) which is then used to make a better estimate for the factor (g k
ωins

)2i
using Eq. (3.2). The second iterative step is to recompute the response x2

i (t)

using the already corrected pseudo-viscous damping (g k
ωins

)
2

i
, and so on until the

value of (g k
ωins

)j
i stabilizes after iteration j. This numerical procedure is shown in

the flow chart in Fig. 1, which shows how the value of the factor ωinsis obtained
by iteration with each time increment.

In case of forced vibration with purely harmonic excitation, the steady state
solution approaches a harmonic motion, i.e.: limt→∞ x(t) = C sin(ω0t+φ), where
C is a constant, and ω0 is the driving frequency. By virtue of its definition, the
correction factor ωins converges to the driving frequency of motion ω0.
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Fig. 1. A flow chart showing the proposed solution procedure within one-time increment.

In case of free vibration, we will have a look at what happens inside two
consecutive iterations, j and j + 1 for the same time increment “i”. In effect, at
increment ti, we are solving the following equation of motion:

(4.1) ω2
nx+ gω2

n

[
1

ωins

]j

i

ẋ+ ẍ = 0.

The generic solution at that increment can be expressed as:

xj
i (t) = C · exp(λj

i (t− ti))

where:

(4.2) [λj
i ]1,2 = −1

2
gω2

n

[
1

ωins

]j

i

∓

√
(

1

2
gω2

n

[
1

ωins

]j

i

)2

− ω2
n.

Note that this solution is valid for the interval t ∈ [ti, ti + dt] if we assume that
ωins is constant in this interval. The general solution then is:

(4.3) xj
i (t) = C1 · exp([λj

i ]1(t− ti)) + C2 · exp([λj
i ]2(t− ti))

where the constants C1 and C2 must be determined using the initial conditions
for this increment, which are of course the values at the end of the previous time
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increment. Thus at t = ti, we have: x = xi, and ẋ = ẋi. Solving for C1 and C2

gives:

(4.4) C1 =
xi[λ

j
i ]2 − ẋi

[λj
i ]2 − [λj

i ]1
and C2 =

−xi[λ
j
i ]1 + ẋi

[λj
i ]2 − [λj

i ]1
.

Using the solution Eq. (4.3), the instantaneous local correction can be calcu-
lated as ωins =

√

|ẍi/xi|, which, after algebraic simplification gives an improved
estimate for ωins:

ωins]
j+1
i =

√
∣
∣
∣
∣

ẋi

xi
([λj

i ]1 + [λj
i ]2) − [λj

i ]1[λ
j
i ]2

∣
∣
∣
∣

(4.5)

=

√
∣
∣
∣
∣
gω2

n

[
1

ωins

]j

i

ẋi

xi
+ ω2

n

∣
∣
∣
∣
.

Equation (4.5) is a nonlinear recurrence relationship that is impossible to solve
for an iteration j. However, it can be shown that this recursive equation is
convergent as j → ∞ as long as xi 6= 0.

In order to find the convergence limits for the recursive equation Eq. (4.5),
we need to look for the candidate fixed points. To achieve this, assume that as
j → ∞, the value of [ωins]

j
i approaches the limit ωins:

lim
j→∞

[ωins]
j
i = lim

j→∞

(
√

∣
∣
∣
∣
gω2

n

[
1

ωins

]j

i

ẋi

xi
+ ω2

n

∣
∣
∣
∣

)

(4.6)

= ωins =

√
∣
∣
∣
∣

gω2
n

ωins

ẋi

xi
+ ω2

n

∣
∣
∣
∣
.

The solution to Eq. (4.6) yields a characteristic cubic polynomial in ωins, which
absolutely guarantees the existence of at least one real solution for ωins. Further,
the solution depends on the signum of ẋi/xi. In other words, it depends on the
state of the system, as stipulated by Chen et al. [37].

It can be easily seen that when ẋi

xi
= 0, the solution converges immediately to

ωins = ωn with:

(4.7) ωd = ωn

√

1 − (g/2)2.

It is obvious too that the solution diverges numerically when xi = 0. However,
substituting xi = 0 into Eq. (4.6) gives ωins = ∞, which upon resubstitution
back again and using L’Hopital’s rule gives ωins = ωn, thus the solution oscil-
lates between ωins = ωn and ∞ for xi = 0. When ẋi

xi
≥ −

(
2√
27

ωn

g

)
, the recurrence
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equation converges to the single real root of the characteristic polynomial gen-
erated from Eq. (4.6). For the case when ẋi

xi
< −

(
2√
27

ωn

g

)
, the polynomial has

3 real roots, and the convergence is not warranted as it depends on the selection
of the initial value for [ωins]

j
i and the sequence can behave chaotically. Generally,

to guarantee convergence, the initial value should be selected near the real roots
of the characteristic limit polynomial.

It is readily seen that we are solving a linear viscous equation per iteration,
and if the time increment “∆t” is taken to be the period of one cycle of motion,
then our approach comes in principle closer to that of Neumark, which equated
the energy per cycle for both hysteretic and viscous models.

Notice that the recurrence solution (Eq. (4.5)) can be obtained directly using
the equation of motion. By considering the Eq. (4.1), and re-arranging for ẍi/xi

and taking square root, then we immediately get to Eq. (4.5). This can also be
done for the case of forced vibration under arbitrary force Fi (Eq. (1.1)) which
then gives:

(4.8) [ωins]
j+1
i =

√
∣
∣
∣
∣

Fi/m

xi
− ω2

n − gω2
n

ẋi

xi

[
1

ωins

]j

i

∣
∣
∣
∣
.

Denoting A = Fi/m
xi

− ω2
n and B = gω2

n
ẋi

xi
, the limit(s) (ωins) for the sequence in

Eq. (4.8) must satisfy the following cubic polynomial:

(4.9) [ωins]
3 −A[ωins] −B = 0.

The convergence of Eq. (4.8) and existence of limits from the characteristic
polynomial Eq. (4.9) depend on the signum of B (and hence, on the state ratio
ẋi/xi) and on the starting initial guess for ωins. One tool to explore convergence
and limits of the recurrence relation is to qualitatively trace the sequence process
on the graph of the generating function F (ωins) =

√

|A+B/ωins| in Eq. (4.9),
as shown in Figs. 2 and 3. In case B > 0 the generating function is strictly
decreasing and bounded from below by the asymptote F (ωins) =

√

|A| as shown
in Fig. 2a, and thus the sequence converges to the single real positive fixed point
(single positive root for Eq. (4.9)).

However if B < 0, then the convergence depends on the starting initial guess
for ωins as shown in Figs 2b and Fig. 3. This is due to the nature of the generating
function for negative B. The sequence may behave chaotically as demonstrated
in Fig. 2b where it may keep cycling around the fixed point with no convergence
(Fig. 2b). However, a suitable choice of initial guess for ωins near the fixed point
can lead to a definite convergence to either a single fixed point (Fig. 3a) or to
multiple fixed points (Fig. 3b), depending on how many real positive roots exist
for the polynomial in Eq. (4.9) and depending on the initial guesses (P0, P1
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Fig. 2. Dependency of convergence of the Eq. (4.9) on the sign of B = gω2
n(ẋi/xi), a) B > 0,

and b) B < 0.

Fig. 3. Dependency of convergence of Eq. (4.9) on the initial guess: a) single real root and
b) 3 real roots.

or P2) for ωins. On either case, the convergence is always guaranteed if we take
the initial guess very close to the fixed points. Given this, there is no need to
carry out the iterations for convergence because we can simply jump straight to
the real fixed points as solutions to the recurrence equation.

It should be mentioned here that the recurrence relation can also diverge (or
oscillate) whenever the whole term under the square root in Eq. (4.8) becomes
zero. This can simply be avoided by careful selection of the initial guess for ωins

such that the term starts as non-zero under the square root.
Figure 4 shows the results of the converged local frequency ωins as computed

for a free vibration case using the numerical iterative scheme and using the roots
of the characteristic polynomial (Eq. (4.9)). Both techniques produce exactly
identical results as expected. All points converged except the seemingly asymp-
totic spikes at all x = 0 points, which represent a numerical singularity as can
be seen in Eq. (4.6).
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Fig. 4. The variation of the instantaneous correction factor ωins along the free response as
obtained from the numerical iterative procedure and identically from the recurrence relation

(Eq. (4.5)) (g = 0.05).

In the relatively brief simulation runs that were performed in the context of
this work no numerical instabilities were observed – although it is conceivable
that such will start to manifest, if the simulation continues for sufficiently long
time.

Because the instantaneous correction factor is calculated based on the imme-
diately prior states, the solution is always bound, in a sense, by said prior states.
In addition, in a time-domain simulation the damping also tends to delay the
onset of numerical-error-induced instabilities.

5. Comparative study

The proposed model is compared to the 4 solutions mentioned earlier for the
case of free vibration of a SDOF. The four solutions presented earlier represent
direct attempts to solve the original problem (Eq. (2.5)) in the time-domain.
The new model is solved using central difference quotient (CDQ) method with
a sufficiently small time increment ∆t ≈ 10−3 2π

ωn
. The value of ωinsis calculated

using an iterative procedure at each time increment until it stabilizes according
to L2-norm tolerance of 10−3:

(5.1)
√

(ω2
ins)

j+1 − (ω2
ins)

j < 10−3.

The results for free vibration are presented in Figs. 5–8 for different damping ra-
tios and natural frequencies. In these results, the proposed solution is conducted
using two techniques, first is numerical via the direct CDQ iterative procedure
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Fig. 5. Hysteretic free vibration response with loss factor g = 0.01 and ωn = 10.

Fig. 6. Hysteretic free vibration response with loss factor g = 0.1 and ωn = 10.
Proposed-CFR is the solution using the fixed points, Proposed-Numerical is the CDQ

iterative solution.

as explained above, and the second (CFR) is using the fixed points from the
cubic function (Eq. (4.9)), in case of multiple roots we resorted to the smallest
root.
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Fig. 7. Hysteretic free vibration response with loss factor g = 0.3 and ωn = 10.
Proposed-CFR is the solution using fixed points, Proposed-Numerical is the CDQ iterative

solution.

Fig. 8. Hysteretic free vibration response with loss factor g = 0.3 and ωn = 100.
Proposed-CFR is the solution using fixed points, Proposed-Numerical is the CDQ iterative

solution.

In the figures, the proposed method seems to go well with Collar and Neu-
mark solutions for a small value of loss factor, and comes in between the two for
higher values of loss factor. On the other hand, the solution by Chen et al., which
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assumes averaged value for the frequency, produces larger amplitudes compared
to the others. The differences, albeit small, become more evident for higher
values of loss factor. The solution by Ribeiro et al. seems to match well with
Collar’s solution, and this is expected since that solution assumed direct substi-
tution of a complex response and then considered the real answer, which is not
far from Collar’s direct substitution method. Overall, the proposed method pro-
duces results that are pretty similar to the other methods, such as Collar [7],
Neumark [6], Chen [37] and Ribeiro [38] although small differences in their
predictions exist. At this time, however, there are no available sufficiently pre-
cise experimental data sets from ideal SDOF systems that could allow a final
judgement as to which prediction is the most accurate. Moreover, while in rea-
sonably good agreement with the rest, the proposed approach has the privilege
of simplicity and generalisability over the other solutions for any kind of loading
scenario, not only harmonic as is shown in Section 7.

In Figs. 9–11, we compare the proposed solution versus Collar’s and the
viscous solutions for the hysteresis loops in case forced and free vibration. The

a) b)

Fig. 9. Hysteresis loops at steady-state of harmonically forced vibration at resonance
frequency, a) g = 0.1, b) g = 0.01.

Fig. 10. Hysteresis loops at harmonically forced vibration at resonance frequency, including
the transient phase, ωn = 1, g = 0.1.
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Fig. 11. a) Internal damping force and b) phase-plane plot for free vibration, ωn = 1,
g = 0.1.

match between the two is evident. In the proposed approach, there appears
to be artefacts (“kinks”) in the damping force. These “kinks”, which are purely
numerical in nature, do not have an effect on the response.

In Fig. 12, we compare the response and hysteresis loops of our proposed
model to the viscous and Reid’s models for the case of harmonic forced vibration

Fig. 12. Comparing responses and hysteresis loops from our proposed model to those from
viscous, Reid and Collar models at different excitation frequencies; a), c) ω0 = ωn,

b), d) ω0 = 10ωn for harmonic forced vibration, ωn = 1, g = 0.3. Collar’s solution is the
steady-state solution.
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with different excitation frequencies. The results show that our model is closer
in predictions to the viscous model, and that Reid’s model overestimates the
response. Also, the match between Collar’s steady-state solution and the viscous
model is evident, and this is not surprising because Collar’s solution utilizes the
frequency of motion as an inverse proportionality to the damping coefficient. The
results also show how the area of the hysteresis loop scales up with the increase
of frequency for the viscous model as compared to the others.

In Fig. 13 we show the calculated loss factor g from the three models; viscous,
Reid and proposed models for different value of g. The loss factor is calculated
from the models as the dissipated energy per cycle divided by the maximum
elastic energy at that cycle computed at the steady state (after long t), i.e.:

(5.2) loss factor ≡
∮
FD dx

2π 1
2kx

2
max

Fig. 13. Comparison between the proposed, Reid, and viscous models for calculation of loss
factor under simple sinusoidal excitation for a) g = 0.1, b) g = 0.2, c) g = 0.3, and d) g = 0.6.
Red solid, black dotted, and blue dashed lines correspond to the proposed, viscous and Reid

models, respectively.
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where
∮
FDdx is the energy dissipated per one cycle at steady-state. The loss fac-

tor is considered a universal measure for damping in materials and structures [40]
and is generally obtained for a material experimentally. Figure 14 shows that
the Reid model predicts a constant loss factor while the viscous model produces
a loss factor that rises linearly as a function of frequency. Our proposed model
produces an interesting prediction of the loss factor. For ω0 < ωn the proposed
model is closer in behavior to the viscous model, and as ω0 > ωn it becomes
asymptotically similar to Reid’s model, where it becomes independent of the
driving frequency. This trend is consistent with many experimental observations
where the damping or loss factors have a weak dependency on frequency. It
slightly increases from a non-zero value for low frequencies until it peaks around
the resonance frequency then remains nearly constant and decreases at a very
slow rate as the frequency increases. The proposed model does capture this trend
unlike the Reid model which produces strictly constant damping at any input
frequency. Field measurements [41] on actual framed buildings show this kind of
trend, where the authors concluded that a new measure for damping must be es-
tablished because the values of damping depend on the method of measurement.
The trend was clearly observed in measuring the loss factor [42] on tempered and
laminated glass plates. Also, the same trend was observed in testing damping
of metal composite plates by [43]. Other experiments [44] on free vibration of
suspended steel box beam showed that a loss factor does remain nearly constant
with a slight decrease by increasing frequency far beyond first resonance.

In Fig. 14 we compare the internal damping force from our proposed solution
to that from Reid’s frictional hysteresis model [12, 27]. As can be seen, Reid’s

Fig. 14. Comparing the internal damping forces for Collar, Reid and proposed solutions.
Free vibration case with wn = 1; g = 0.1.
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model suffers bigger disadvantage due to such numerical artefacts compared to
our model. Our proposed solution remains more faithful to the original Collar’s
solution.

In Figs. 14 and 15 we compare results of internal damping force as predicted
by Reid, viscous, Collar and our proposed model for free and forced vibration.
The Reid model [12, 27] is based on the linear Columb friction model which
assumes that the damping force is in phase with velocity but depends on the
displacement rather than the velocity. The internal damping force as proposed
by the Reid model is written as:

(5.3) FD = kg|x| ẋ|ẋ| .

The dependence on displacement is necessary to produce a frequency-inde-
pendent energy loss, while the direction of force is maintained to coincide with
that of a viscous model. This produces discontinuity in the damping force when-
ever the velocity changes sign. This discontinuity in the Reid model is evident in
Fig. 14 where there is a sudden change in the direction of the damping force. The
proposed model compares quite well with both Collar’s and viscous solutions,
with the “kinks” in the proposed model being the only distinguishing feature
between them. The Reid model seems to produce higher values of damping force
compared to the other models. It is noted that these kinks have no effect on the
smoothness of the response or its derivatives as evidently seen in the figures, par-
ticularly Fig. 11 which compares two diagrams: damping force vs. displacement
(xFD), and velocity vs displacement (xẋ).

Figure 15 compares the resulting hysteresis loops from the proposed model
against viscous and Reid models for a SDOF with different harmonic excitations

Fig. 15. Comparing steady hysteresis loops of the 3 models for different levels of excitation
frequencies for g = 0.1. Red solid line = Proposed model, Blue dashed line = Reid model,

and Black dotted line = Viscous model.



346 C. Spitas, M. M. S. Dwaikat, V. Spitas

= sin(ω0t). When ω0 = ωn the proposed model and the viscous models are
similar in shape with slight variation in the area of the loop. The Reid model
produces larger amplitudes of damping forces. When ω0 > ωn, as seen in Fig. 3,
the viscous model produces larger hysteresis loops, indicating larger dissipation
of energy. The hysteresis loops from the proposed model and Reid are distinct
in shape but are similar in terms of area of the loop, indicating equal energy
dissipation. When ω0 < ωn, both Reid and proposed models produce hysteresis
loops larger in size as compared to the viscous model.

Fig. 16. Comparing total internal force from Reid, viscous and proposed models for the case
of harmonic forced vibration at resonance, wn = 1; g = 0.1.

Figure 16 shows the total internal force (sum of damping and elastic forces)
for the viscous, Reid and proposed models in the steady-state of forced vibration
at resonance. The proposed and viscous models match, while the Reid model
produces larger amplitudes and discontinuous as seen in the figure.

6. Response to step load

The differences between viscous and hysteretic damping become noticeable
in case the excitation is non-harmonic. Particularly, when the excitation force
is a constant force applied at t = 0, with all-zero initial conditions (step load),
the behaviour of hysteretic damper becomes distinguishable from that of viscous
damper. Here we compare the results of three models in Fig. 17, namely our
proposed model, viscous and Reid–Coulomb friction models. Even for small value
of the loss factor (g = 0.01) the difference is evident between viscous damping
(with damping ratio ξ = g/2) and the hysteretic models. The proposed approach
is closer to the Reid model, which is considered to be a benchmark model for the
case of hysteresis analysis. The Reid model produces relatively larger amplitudes,
however the frequencies from all models are almost identical. The difference is
amplified in case of stiffer systems as seen in Fig. 17b and c.
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Fig. 17. Comparing the response to a unit constant force using different models, a) ωm = 1,
m = 1, g = 0.01, b) ωn = 10, m = 1, g = 0.01, and c) ωn = 10, m = 1, g = 0.1.

From Fig. 17, we see that if we fix the damping ratio in all models (g for
hysteresis and ξ = g/2 for the viscous), the viscous model produces higher ampli-
tudes for higher stiffer systems (higher natural frequency) because the frequency
of motion is a proportionality factor in the viscously dissipated energy. Thus
maintaining constant the damping ratio for the viscous system does not cause
the dissipated energy to be constant. This is a prime distinction between the
viscous and hysteretic models in general. Thus having higher natural frequency
in the viscous model (with fixed damping ratio) means higher dissipated energy
and this means higher amplitudes (as the elastic energy is force times amplitude).

7. Linearity of the proposed approach

7.1. Non-linearity of the damping force

It is clear that the proposed model is non-linear, as a direct result of the
definition of the instantaneous correction factor ωins =

√

|ẍ/x| producing a non-
constant damping coefficient for the differential equation of motion:

(7.1) mẍ+ g
k

ωins
ẋ+ kx = F.
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To further investigate this matter, suppose two responses x1 and x2 of the same
system and initial value problem for two different excitation functions F1 and
F2 where at any one given instant t for x1 the correction factor is ωins,1 =
√

|ẍ1/x1| and for x2 it is ωins,2 =
√

|ẍ2/x2|. The response x of the same system
to a linear superposition of the excitations aF 1 + bF 2, where ab are any two
real numbers, would at the same given instant be characterised by a correction
factor ωins =

√

|ẍ/x|. In order for this response x to be identical to the linear
superposition of the responses ax1+bx2, it would need to satisfy the relationship:

(7.2) mẍ+ g
k

ωins
ẋ+ kx

= a

(

mẍ1 + g
k

ωins,1
ẋ1 + kx1

)

+ b

(

mẍ2 + g
k

ωins,2
ẋ2 + kx2

)

which, by replacing x = ax1 + bx2, yields:

(7.3)
aẋ1 + bẋ2

ωins
=

aẋ1

ωins,1
+

bẋ2

ωins,2
.

Replacing the correction factors as per Eq. (3.3) and after some manipulations
we obtain:

(7.4) (aẋ1 + bẋ2)

√
∣
∣
∣
∣

ax1 + bx2

aẍ1 + bẍ2

∣
∣
∣
∣
= aẋ1

√
∣
∣
∣
∣

x1

ẍ1

∣
∣
∣
∣
+ bẋ2

√
∣
∣
∣
∣

x2

ẍ2

∣
∣
∣
∣
.

Generally, it cannot be expected that Eq. (7.4) will be true at every instant and
for any set of responses x1 and x2, except in the case that both x1 and x2 are
harmonic functions having the same frequency, thus proving the ex principio
non-linearity of the model.

7.2. Near-linearity of the overall system response

At the same time, we have confirmed for various excitations, including har-
monic and non-harmonic periodic signals, that the dynamical model for the
complete system, although its damping term is non-linear still produces the
approximately linear behaviour that is expected of dynamical systems with lin-
ear stiffness. Figure 18 demonstrates this in a straightforward manner, whereby
the superposition of the obtained responses x1 and x2 of the same system for
two different simple harmonic excitation functions F1 and F2 is nearly (but not
exactly) identical to the response x of the system to the superposition of the
excitations F1 +F2. This is a characteristic of not only the presented model, but
also of a number of other models with non-linear damping and linear stiffness,
such as Reid’s model, particularly in cases where the damping forces are low in
comparison to the elastic restoring forces.
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Fig. 18. Comparing the superposition of the responses due to and against the response to
the combined forces. a) Input forces and the corresponding responses. b) Response due to the

sum of forces compared to linear superposition.

7.3. Linearity within each numerical solution step

Although Eq. (7.1) is globally non-linear, as shown in Section 7.1, we nonethe-
less note that in in the context of each time step during its numerical integra-
tion, ωins is instantaneously computed and stays as constant within the same
time step, as per Fig. 1. Thus Eq. (7.1) is instantaneously treated as a linear
differential equation with constant coefficients and the merits of linear modal
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superposition are valid within each iteration. In fact, if a general solution can be
written in terms of the variable correction factor within the whole time incre-
ment, it will depend only on the initial state of the time increment in particular.
Thus, that solution can be used to generate the recursive relation for the correc-
tive factor ωins.

It is worth mentioning here that the proposed procedure maintains the causal-
ity principle. This is because the proposed method simply solves classically vis-
cously damped system (which is inherently causal) but with the damping coef-
ficient updated at each time increment.

8. Conclusions

In this article, the hysteretic damping is reproduced in the time-domain with
an elegant and simple mathematical formulation that requires no prior knowledge
of an excitation frequency or eigenfrequency and adapts autonomously to varying
conditions. Also, the model does not need the entire history of motion as it is
the case with the models that utilize the Hilbert transforms or quasi-hysteretic
models.

The proposed hysteretic damping model is derived through a significant mod-
ification to the viscous damping model and utilizes local updating of the damping
force through the instantaneous correction factor ωinst. The model bears physical
meaning and does not rely on internal state variables.

Overall, the proposed method produces results that are quite similar to the
others. Generally, all models agree with each other for a small value of loss factor.
The higher the loss factor, the more evident the differences that appear. Thus
a final judgement would be left to precise experiments – which are as yet un-
available – to decide on which one is the most accurate. However, the proposed
approach has the privilege of simplicity and generalisability over the other solu-
tions for any kind of loading scenario, not only harmonic, as was demonstrated
with a step loading scenario.

The mathematical description of the model requires further enhancement in
order to get rid of the artefacts that occur for oscillating ωins (at xi = 0) if the
recurrence procedure is used. The model holds promising versatility for expand-
ing into structures with multiple degrees of freedom and hence for modelling
elastodynamics of continuum materials with hysteretic internal damping, and
these will be the topics of future studies.
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