PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of CH4 catalytic combustion on different catalyst

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this paper is to study the reaction performance of methane catalytic combustion on different catalyst and the hydrogen assisted combustion in a monolith honeycomb reactor experimentally. The characteristics of catalytic ignition and reaction with different promoters are investigated for the development of more efficient technology and improvement of precious metal catalyst. This paper presents experimental results on CH4 and H2 assisted catalytic combustion performance of four cordierite-based honeycomb catalyst. The experimental results show that the catalyst with different promoters show different reaction activities, the needed combustor inlet temperature can be lower as the catalyst temperature can be increased by the heat release due to catalytic hydrogen oxidation at lower temperature, the hydrogen addition ensures light-off of ultra low heat value fuel.
Rocznik
Strony
142--148
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Aerospace, Shenyang Aerospace University, China
autor
  • Faculty of Aerospace, Shenyang Aerospace University, China
autor
  • Faculty of Aerospace, Shenyang Aerospace University, China
autor
  • Faculty of Aerospace, Shenyang Aerospace University, China
Bibliografia
  • [1] S. Su, A. Beath, H. Guo, C. Mallett, An assessment of mine methane mitigation and utilisation technologies, Prog Energy Combust Sci 31 (2) (2005) 123–170.
  • [2] S. Su, A. C. Beath, C. W. Mallett, A method and system for combustion of methane (2002).
  • [3] E. M. Johansson, K. M. J. Danielsson, Catalytic combustion of gasified biomass over hexaaluminate catalysts: influence of palladium loading and ageing, Applied catalysis A: General 182 (1999) 199–208.
  • [4] S. Cimino, R. Pirone, G. Russo, Thermal stability of perpvskite-based monolithic reactors in the catalytic combustion of methane, Ind Eng Chem Res 40 (2001) 80–85.
  • [5] R. M. Heck, S. Gulati, R. J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chem Eng J 82 (2001) 149–156.
  • [6] P. Marin, M. A. G. Hevia, S. Ordonez, F. V. Diez, Combustion of methane lean mixtures in reverse flow reactors: comparison between packed and structured catalyst beds, Catal Today 105 (3–4) (2005) 701–708.
  • [7] J. H. Lee, D. L. Trimm, Catalytic combustion of methane, Fuel Process Technol 42 (1995) 339–359.
  • [8] J. Ledwich, S. Bhatia, S. Su., Catalytic combustion of coal mine ventilation air: literature review and experimental preparation, in: CSIRO Exploration and Mining, 2001.
  • [9] S. Morel, The afterburning of carbon monoxide in natural gas combustion gases in the presence of catalytic ceramic coatings, Journal of Power Technologies 92 (2) (2012) 109–114.
  • [10] L.-H. Xiao, Y.-X. Yang, K.-P. Sun, Study of ch4 low temperature catalytic combustion on pd/ceo2 catalyst-effect of preparations on catalyst performance, Petrochemical 15 (2004) 192–193.
  • [11] L.-P. Gao, J.-Z. Liu, J. Wu, Characterization of reactivity and activation energy for catalytic combustion of methane on pd-m/al2o3, Journal of China University of Mining & Technology 39 (2010) 859–864.
  • [12] Z. R. Ismagilov, N. V. Shikina, S. A. Yashnik, Development and testing of granular catalysts for combustors of regenerative gas turbine plants, Kinetics and Catalysis 49 (6) (2008) 873–885.
  • [13] Y.-C. Chao, G.-B. Chen, H.-W. Hsu, Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor, Applied Catalysis A: General 261 (1) (2004) 99– 107.
  • [14] S. Su, J. Agnew, Catalytic combustion of coal mine ventilation air methane, Fuel 85 (6) (2006) 1201–1210.
  • [15] O. Deutschmann, L. I. Maier, U. Riedel, A. H. Stroemman, R. W. Dibble, Hydrogen assisted catalytic combustion of methane on platinum, Catalysis Today 59 (1–2) (2000) 141–150.
  • [16] H. Arai, T. Yamada, K. Equchi, T. Seigama, Catalytic combustion of methane over various perovskyte-type catalysts, Applied Catalysis A 26 (1986) 265–279.
  • [17] T. R. Baldwin, R. Burch, Remarkable activity enhancement in the catalytic combustion of methane on supported palladium catalysts, Appl. Catal. 6 (1) (1990) 131–138.
  • [18] Y. F. Chang, J. G. McCarty, E. D. Wachsman, V. L. Wong, Catalytic decomposition of nitrous oxide over ruexchanged zeolites, Applied Catalysis B: Environmental 4 (4) (1994) 283–299.
  • [19] G. Groppi, C. Cristiani, L. Lietti, C. Ramella, M. Valentini, P. Forzatti, Effect of ceria on palladium supported catalysts for high temperature combustion of ch4 under lean conditions, Catal. Today 50 (2) (1999) 399–412.
  • [20] Z. R. Ismagilov, M. A. Kerzhentsev, V. A. Sazonov, L. T. Tsykoza, N. V. Shikina, V. V. Kuznetsov, V. A. Ushakov, S. V. Mishanin, N. G. Kozhukhar, G. Russo, O. Deutschmann, Study of catalysts for catalytic burners for fuel cell power plant reformers, Korean J. Chem. Eng. 20 (3) (2003) 461–467.
  • [21] Y. Ozawa, Y. Tochihara, M. Nagai, S. Omib, Pdo/al2o3 in catalytic combustion of methane: stabilization and deactivation, Chem. Eng. Sci. 58 (3–6) (2003) 671–677.
  • [22] L. Liotta, G. D. Carlo, G. Pantaleo, A. Venezia, G. Deganello, E. M. Borla, M. Pidria, Supported co3o4 - ceo2 monoliths: Effect of preparation method and pd - pt promotion on the co/ch4 oxidation activity, in: D. D. V. S. H. P. J. J. M. E.M. Gaigneaux, M. Devillers, P. Ruiz (Eds.), Scientific Bases for the Preparation of Heterogeneous Catalysts Proceedings of the 9th International Sym-posium, Vol. 162 of Studies in Surface Science and Catalysis, Elsevier, 2006, pp. 657–664.
  • [23] C. Bozo, N. Guilhaume, E. Garbowski, M. Primet, Combustion of methane on ceo2-zro2 based catalysts, Catalysis Today 59 (1–2) (2000) 33–45.
  • [24] P. Fornasiero, G. Balducci, R. Di Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, Modification of the redox behaviour of ceo2 induced by structural doping with zro2, Journal of Catalysis 164 (1) (1996) 173–183.
  • [25] C. E. Hori, H. Permana, K. Ng, A. Brenner, K. More, K. M. Rahmoeller, D. Belton, Thermal stability of oxygen storage properties in a mixed ceo2-zro2 system, Applied Catalysis B: Environmental 16 (2) (1998) 105–117.
  • [26] A. Cybulski, J. A. Moulin, Structured catalysts and reactors, 2nd Edition, Boca Raton, London, New York, 2006.
  • [27] P. Meriaudeau, O. H. Ellestad, M. Dufaux, et al., Metalsupport interaction. catalytic properties of tio2-supported platinum, iridium and rhodium, Journal of Catalysis 75 (2) (1982) 243–250.
  • [28] S. J. Tauster, S. C. Fung, R. L. Garten, Strong metalsupport interactions. group 8 noble metals supported on titanium dioxide, Journal of American Chemistry society 100 (1) (1978) 170–175.
  • [29] K. S. Sim, L. Hilaire, F. Le Normand, R. Touroude, V. Paul-Boncour, A. Percheron-Guegan, Catalysis by palladium-rare-earth-metal(repd) intermetallic compounds: hydrogenation of but-1-ene, buta-1, 3-diene and but-1-yne, Chem Soc Faraday Trans 87 (9) (1991) 1453–1460.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06f6b971-6bbc-46c6-9f20-8cf5adecb4f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.