PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the inverse signed total domination number in graphs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the inverse signed total domination number in graphs and present new sharp lower and upper bounds on this parameter. For example by making use of the classic theorem of Turán (1941), we present a sharp upper bound on Kr+1-free graphs for r ≥ 2. Also, we bound this parameter for a tree from below in terms of its order and the number of leaves and characterize all trees attaining this bound.
Rocznik
Strony
447--456
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • University of Mazandaran Department of Mathematics Babolsar, Iran
autor
  • University of Mazandaran Department of Mathematics Babolsar, Iran
Bibliografia
  • [1] M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann, Bounds on the inverse signed total domination numbers in graphs, Opuscula Math. 36 (2016) 2, 145–152.
  • [2] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), 109–125.
  • [3] S.M. Hosseini Moghaddam, D.A. Mojdeh, B. Samadi, L. Volkmann, New bounds on the signed total domination number of graphs, Discuss. Math. Graph Theory 36 (2016), 467–477.
  • [4] Z. Huang, Z. Feng, H. Xing, Inverse signed total domination numbers of some kinds of graphs, Information Computing and Applications Communications in Computer and Information Science ICICA 2012, Part II, CCIS 308 (2012), 315–321.
  • [5] V. Kulli, On n-total domination number in graphs, Graph Theory, Combinatorics, Algorithms and Applications, SIAM, Philadelphia, 1991, 319–324.
  • [6] D.A. Mojdeh, A. Sayed Khalkhali, H. Abdollahzadeh, Y. Zhao, Total k-distance domination critical graphs, Transaction on Combinatorics 5 (2016) 3, 1–9.
  • [7] P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941), 436–452.
  • [8] C. Wang, The negative decision number in graphs, Australas. J. Combin. 41 (2008), 263–272.
  • [9] C. Wang, Lower negative decision number in a graph, J. Appl. Math. Comput. 34 (2010), 373–384.
  • [10] H. Wang, E. Shan, Signed total 2-independence in graphs, Utilitas Math. 74 (2007), 199–206.
  • [11] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, 2001.
  • [12] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001), 225–229.
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06f58179-01e1-4c5e-b1a5-1e1747bcdc7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.