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Abstract. In this paper, we study the inverse signed total domination number in graphs
and present new sharp lower and upper bounds on this parameter. For example by making
use of the classic theorem of Turán (1941), we present a sharp upper bound on Kr+1-free
graphs for r ≥ 2. Also, we bound this parameter for a tree from below in terms of its order
and the number of leaves and characterize all trees attaining this bound.
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1. INTRODUCTION

Throughout this paper, let G be a finite connected graph with vertex set V = V (G),
edge set E = E(G), minimum degree δ = δ(G) and maximum degree ∆ = ∆(G). For
any vertex v ∈ V , N(v) = {u ∈ G | uv ∈ E} denotes the open neighborhood of v
in G, and N [v] = N(v) ∪ {v} denotes its closed neighborhood. For all A,B ⊆ V let
[A,B] be the set of edges having one end point in A and the other in B. We use [11]
as a reference for terminology and notation which are not defined here.

A set D ⊆ V is a total dominating set in G if each vertex in V is adjacent to at
least one vertex in D. The total domination number γt(G) is the minimum cardinality
of a total dominating set in G.

The k-tuple total dominating set (or k-total dominating set) was introduced by
Kulli [5], as a subset D ⊆ V with |N(v)∩D| ≥ k for all v ∈ V , where 1 ≤ k ≤ δ. The
k-tuple total domination number (or k-total domination number), denoted γ×k,t(G),
is the smallest number of vertices in a k-tuple total dominating set. (We should note
that, k-tuple total domination number is different from total k-distance domination
number [6]). Clearly, γ×1,t(G) = γt(G).
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Let B ⊆ V . For a real-valued function f : V → R we define f(B) =
∑
v∈B f(v).

Also, f(V ) is the weight of f . A signed total dominating function, abbreviated STDF,
of G is defined in [12] as a function f : V → {−1, 1} such that f(N(v)) ≥ 1 for every
v ∈ V . The signed total domination number (STDN) of G, γst(G), is the minimum
weight of a STDF of G. If we replace “≥” and “minimum” with “≤” and “maximum”,
respectively, in the definition of STDN, we will have the signed total 2-independence
function (ST2IF) and the signed total 2-independence number (ST2IN) of the graph,
denoted by α2

st(G). This concept was introduced in [10] and studied in [8, 9] as the
negative decision number.

An inverse signed total dominating function, abbreviated ISTDF, of G is defined
in [4] as a function f : V → {−1, 1} such that f(N(v)) ≤ 0 for every v ∈ V . The
inverse signed total domination number (ISTDN), denoted by γ0

st(G), is the maximum
weight of an ISTDF of G. For more information the reader can consult [1].

In this paper, we continue the study of the concept of inverse signed total domi-
nation in graphs. In Section 2, we present a sharp upper bound on a general graph
G by considering the concept of k-tuple total domination in graphs. Moreover, as
an application of the well-known theorem of Turán [7] about Kp-free graphs we give
an upper bound on γ0

st(G) for a Kr+1-free graph G and show the bound is the best
possible by constructing an r-partite graph attaining the bound. In Section 3, we
discuss ISTDN for regular graphs and give sharp lower and upper bounds on the
ISTDN of regular graphs. Finally, in Section 4 we show that this parameter is not
bounded from both above and below in general, even for trees. Also, we give a lower
bound on the ISTDN of a tree T as

γ0
st(T ) ≥ −n+ 2

(⌊`1
2

⌋
+ . . .+

⌊`s
2

⌋)
,

where `1, . . . , `s are the number of leaves adjacent to its s support vertices, and
characterize all trees attaining this bound.

2. TWO UPPER BOUNDS

Throughout this paper, if f is an ISTDF of G, then we let P and M denote the sets
of those vertices which are assigned 1 and −1 under f , respectively. We apply the
concept of tuple total domination to obtain a sharp upper bound on γst(G). It is easy
to check the proof of the following observation.

Observation 2.1. Let Kn and Cn be complete graph and cycle with n vertices. Then

(i) γ0
st(Kn) =

{
−2 if n ≡ 0 (mod 2),
−1 if n ≡ 1 (mod 2); ([4])

(ii) γ0
st(Cn) =





0 if n ≡ 0 (mod 4)
−1 if n ≡ 1 or 3 (mod 4),
−2 if n ≡ 2 (mod 4); ([4])
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(iii) γt(Kn) = 2 for n ≥ 2;

(iv) γt(Cn) =
{⌈

n
2
⌉

+ 1 if n ≡ 2 (mod 4),⌈
n
2
⌉

otherwise.

We make use of them to show that the following bound is sharp.
Theorem 2.2. If G is a graph of order n and minimum degree δ ≥ 1, then

γ0
st(G) ≤ n− 2

⌈2γt(G) + δ − 2
2

⌉

and this bound is sharp.
Proof. Let f : V → {−1, 1} be a maximum ISTDF of G. The condition f(N(v)) ≤ 0,
for all v ∈ V , leads to |N(v) ∩ M | ≥ ddeg(v)

2 e ≥ d δ2e. So, M is a d δ2e-tuple total
dominating set in G and therefore

(n− γ0
st(G))/2 = |M | ≥ γ×d δ2 e,t(G). (2.1)

Now let D be a minimum d δ2e-tuple total dominating set in G. Hence,
|N(v) ∩D| ≥ d δ2e, for all v ∈ V . Let u ∈ D. Then |N(v) ∩ (D \ {u})| ≥ d δ2e − 1,
for all v ∈ V . This shows that D \ {u} is a (d δ2e − 1)-tuple total dominating set
in G. Therefore, γ×d δ2 e,t(G) ≥ γ×(d δ2 e−1),t(G) + 1. If we iterate this process, we finally
arrive at

γ×d δ2 e,t(G) ≥ γ×(d δ2 e−1),t(G) + 1 ≥ . . . ≥ γ×1,t(G) +
⌈δ

2

⌉
− 1 = γt(G) +

⌈δ
2

⌉
− 1.

Thus, (2.1) yields
(n− γ0

st(G))/2 ≥ γt(G) +
⌈δ

2

⌉
− 1

as desired. Moreover, this bound is sharp. It is sufficient to consider the complete
graph Kn, when n ≥ 2 and the cycle Cn, when n ≥ 3.

Note that the difference between γ0
st(G) and n − 2d 2γt(G)+δ−2

2 e may be large. It is
easy to check that, for a complete bipartite graph Km,n,

γ0
st(Km,n) =





0 if n,m ≡ 0 (mod 2),
−1 if m and n have different parity,
−2 if n,m ≡ 1 (mod 2).

While n+m−2d 2γt(Km,n)+δ−2
2 e ≥ n−3, where n = max{m,n}, the upper bound in

Theorem 2.4 works better for bipartite graphs. We first recall that a graph is Kp-free
if it does not contain the complete graph Kp as an induced subgraph. For our next
upper bound, we use the following well-known theorem of Turán [7].
Theorem 2.3. If G is a Kr+1-free graph of order n, then

|E(G)| ≤ r − 1
2r · n2.
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Theorem 2.4. Let r ≥ 2 be an integer, and G be a Kr+1-free graph of order n.
If c = d δ2e, then

γ0
st(G) ≤ n− r

r − 1

(
−c+

√
c2 + 4r − 1

r
cn

)

and this bound is sharp.

Proof. Let f be an ISTDF of G. Let v ∈ P . Since f(N(v)) ≤ 0, |N(v) ∩M | ≥ d δ2e.
Therefore

|[M,P ]| ≥
⌈δ

2

⌉
|P |. (2.2)

Furthermore, Theorem 2.3 implies

|[M,P ]| =
∑

v∈M
|N(v) ∩ P | ≤

∑

v∈M
|N(v) ∩M | = 2|E(G[M ])| ≤ r − 1

r
|M |2.

Combining this inequality chain and (2.2), we arrive at

r − 1
r
|M |2 + c|M | − cn ≥ 0.

Solving the above inequality for |M | we obtain

|M | ≥ r

2(r − 1)

(
−c+

√
c2 + 4r − 1

r
cn

)
.

Because of |M | = (n− γ0
st(G))/2, we obtain the desired upper bound.

That the bound is sharp, can be seen by constructing an r-partite graph attaining
this upper bound as follows. Let Hi be a complete bipartite graph with vertex partite
sets Xi and Yi, where |Xi| = r− 1 and |Yi| = (r− 1)2 for all 1 ≤ i ≤ r. Let the graph
H(r) be the disjoint union of H1, . . . ,Hr by joining each vertex of Xi (in Hi) with all
vertices in union of Xj , i 6= j. Also, we add (r − 1)3 edges between Yi and the union
of Yj , i 6= j, so that every vertex of Yi has exactly r− 1 neighbors in this union. Now
let Zi = Xi∪Yi+1, for all 1 ≤ i ≤ r (mod r). Then H(r) is an r-partite graph of order
n = r2(r−1) with partite sets Z1, . . . , Zr. Clearly, every vertex in Yi has the minimum
degree δ = 2r − 2 and hence c = r − 1. Now we define f : V (H(r))→ {−1, 1}, by

f(v) =
{
−1 if v ∈ X1 ∪ . . . ∪Xr,
1 if v ∈ Y1 ∪ . . . ∪ Yr.

It is easy to check that f is an ISTDF of H(r) with weight

r(r − 1)2 − r(r − 1) = n− r

r − 1

(
−c+

√
c2 + 4r − 1

r
cn

)
.

This completes the proof.
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3. REGULAR GRAPHS

Our aim in this section is to give sharp lower and upper bounds on the ISTDN
of a regular graph. Henning [2] and Wang [9] proved that for an r-regular graph G,

γst(G) ≤
{

( r2+r+2
r2+3r−2 )n if r ≡ 0 (mod 2),

( r2+1
r2+2r−1 )n if r ≡ 1 (mod 2)

(3.1)

(see [2]), and

α2
st(G) ≥

{
( 1−r

1+r )n if r ≡ 0 (mod 2),

( 1+2r−r2

1+r2 )n if r ≡ 1 (mod 2)
(3.2)

(see [9]). Furthermore, these bounds are sharp. Also, the following sharp lower and
upper bounds on STDN and ST2IN of an r-regular graph G can be found in [12]
and [8, 10], respectively.

γst(G) ≥
{

2n/r if r ≡ 0 (mod 2),
n/r if r ≡ 1 (mod 2) (3.3)

and
α2
st(G) ≤

{
0 if r ≡ 0 (mod 2),
n/r if r ≡ 1 (mod 2). (3.4)

Applying the concept of tuple total domination we can show that there are special
relationships among γ0

st(G), γst(G) and α2
st(G) when we restrict our discussion to

the regular graph G.
Theorem 3.1. Let G be an r-regular graph. If r is odd, then γ0

st(G) = −γst(G) and
if r is even, then γ0

st(G) = α2
st(G).

Proof. By (2.1), we have

γ0
st(G) ≤ n− 2γ×d r2 e,t(G). (3.5)

Let D be a minimum d r2e-tuple total dominating set in G. We define f : V → {−1, 1},
by

f(v) =
{
−1 if v ∈ D,
1 if v ∈ V \D.

Taking into account that D is a d r2e-tuple total dominating set, we have

f(N(v)) = |N(v) ∩ (V \D)| − |N(v) ∩D| = deg(v)− 2|N(v) ∩D| ≤ r − 2
⌈r

2

⌉
≤ 0.

Thus, f is an ISTDF of G with weight

n− 2γ×d r2 e,t(G)

and therefore γ0
st(G) ≥ n− 2γ×d r2 e,t(G). Now the inequality (3.5) implies

γ0
st(G) = n− 2γ×d r2 e,t(G). (3.6)
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The following equalities for the STDN and the ST2IN of G can be proved similarly:

γst(G) = 2γ×d r+1
2 e,t(G)− n (3.7)

and
α2
st(G) = n− 2γ×b r2 c,t(G). (3.8)

From (3.6), (3.7) and (3.8), the desired results follow.

Using Theorem 3.1 and inequalities (3.1)–(3.4) we can bound γ0
st(G) of a regular

graph G from both above and below as follows.

Theorem 3.2. Let G be an r-regular graph of order n. Then
(1− r

1 + r

)
n ≤ γ0

st(G) ≤ 0, r ≡ 0 (mod 2),

and
−
( r2 + 1
r2 + 2r − 1

)
n ≤ γ0

st(G) ≤ −n/r, r ≡ 1 (mod 2).

Furthermore, these bounds are sharp.

As an immediate result of Theorem 3.1 we have γ0
st(G) = −γst(G) for all cu-

bic graph G. Hosseini Moghaddam et al. [3] showed that γst(G) ≤ 2n/3 is a sharp
upper bound for all connected cubic graph G different from Heawood graph G14
(see Figure 1). Therefore, if G is a connected cubic graph different from G14, then
γ0
st(G) ≥ −2n/3 is a sharp lower bound.

Fig. 1. The Heawood graph G14

4. TREES

It has been proved by Atapour et al. in [1] that γ0
st(T ) ≤ (n− 4)/3, for any tree T of

order n ≥ 2. On the other hand, Henning [2] proved that γst(T ) ≥ 2, for any tree T
of order at least two. Therefore, γst(T ) is bounded from below by the lower bound 2,
not depending on the order or anything else, for any tree T . A similar result cannot be
presented for γ0

st(T ). In what follows we show that in general γ0
st(T ) is not bounded

from both above and below. In fact, we prove a stronger result as follows.
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Proposition 4.1. For any integer k, there exists a tree T with γ0
st(T ) = k.

Proof. We consider three cases.
Case 1. Let k = 0. Consider the v1− v2− v3− v4 path P4. Clearly, f(v1) = f(v4) = 1
and f(v2) = f(v3) = −1 define a maximum ISTDF of P4 with weight 0.
Case 2. Let k ≥ 1. Consider the path Pk+4 on vertices v1, . . . , vk+4, respectively, in
which v1 and vk+4 are the leaves. Let T be a tree obtained from Pk+4 by adding two
leaves to each vertex vi, for all 3 ≤ i ≤ k + 2. The condition f(N(v)) ≤ 0, for all
ISTDF f and v ∈ V (T ), follows that all support vertices must be assigned −1 under
f . This shows that f(v2) = . . . = f(vk+3) = −1 and f(v) = 1, for v 6= v2, . . . , vk+3,
is a maximum ISTDF of T with weight k.
Case 3. Let k ≤ −1. Let Ti be a tree obtained from a the path P3 on vertices vi1, vi2
and vi3 by adding two leaves `1

ij and `2
ij to vij , for j = 1, 2, 3. Let the tree T be

the disjoint union of T1, . . . , T|k| by adding a path on the vertices v12, . . . , v|k|2. Then
f : V (T )→ {−1, 1} defined by

f(v) =
{
−1 if v = vij , `

2
i1, `

2
i3,

1 if v 6= vij , `
2
i1, `

2
i3

is a maximum ISTDF of T with weight k.

We bound the ISTDN of a tree from below by considering its leaves and support
vertices and characterize all trees attaining this bound. For this purpose, we introduce
some notation. The set of leaves and support vertices of a tree T are denoted by
L = L(T ) and S = S(T ), respectively. Consider Lv as the set of all leaves adjacent
to the support vertex v, and T ′ as the subgraph of T induced by the set of support
vertices.

The following lemma will be useful.

Lemma 4.2. If T is a tree, then there exists an ISTDF of T of the weight γ0
st(T )

that assigns to at least b `i2 c leaves of the support vertex vi the value 1, where `i is
the number of leaves adjacent to vi.

Proof. Let f : V → {−1, 1} be an ISTDF of weight γ0
st(T ). Suppose that there

exists a support vertex vi which is adjacent to at most b `i2 c − 1 vertices in P . Then,
f(N(vi)) ≤ −deg(vi)+2(b `i2 c−1) ≤ −2. Let u be a leaf adjacent to vi with f(u) = −1.
Define f ′ : V → {−1, 1} by

f ′(v) =
{

1 if v = u,
f(v) if v 6= u.

Then f ′ is an ISTDF of T with weight γ0
st(T )+2, which is a contradiction. Therefore,

every support vertex vi is adjacent to at least b `i2 c vertices in P . Consider the support
vertex v1 and the vertices u1, . . . , ub `1

2 c
in Lv1 . Without loss of generality, we can

assume that u1, . . . , ub `1
2 c

have the value 1 under f . Since f is a maximum ISTDF
then this statement holds for the other support vertices, as well.



454 D.A. Mojdeh and B. Samadi

Now we define Ω to be the family of all trees T satisfying the following conditions:
(a) for any support vertex w we have |Lw| ≥ 2 or T is isomorphic to the path P2;
(b) ∆(T ′) ≤ 1;
(b1) if ∆(T ′) = 1, then all of vertices of T are leaves or support vertices and |Lw| is
even for all support vertex w;
(b2) if ∆(T ′) = 0, then (i) T is isomorphic to the star K1,n−1 or (ii) each support
vertex is adjacent to just one vertex in V \ (L ∪ S), every vertex in V \ (L ∪ S) has
at least one neighbor in S and |Lw| is even for all support vertices w.

We are now in a position to present the following lower bound.

Theorem 4.3. Let T be a tree of order n with the set of support vertices S =
{v1, . . . , vs}. Then

γ0
st(T ) ≥ −n+ 2

(⌊`1
2

⌋
+ . . .+

⌊`s
2

⌋)
,

where `i is the number of leaves adjacent to vi. Moreover, the equality holds if and
only if T ∈ Ω.

Proof. Let f : V → {−1, 1} be a function which assigns 1 to b `i2 c leaves of vi and −1
to all remaining vertices. Then, it is easy to see that f is an ISTDF of T . Therefore

γ0
st(T ) ≥ f(V ) = −n+ 2

(⌊`1
2

⌋
+ . . .+

⌊`s
2

⌋)
.

Let T be a tree for which the equality holds. So, we may assume that the above
function f is a maximum ISTDF of T . We first show that T satisfies (a). Without
loss of generality, we assume that T is not isomorphic to the path P2. Suppose that
there exists a support vertex vk adjacent to just one leaf u. Thus, s ≥ 2. Then the
function g : V → {−1, 1} which assigns 1 to u and b `i2 c leaves of vi, i 6= k, and −1 to
all other vertices is an ISTDF of T with weight f(V ) + 1, which is a contradiction.
Therefore, all support vertices are adjacent to at least two leaves.

That the tree T satisfies (b), may be seen as follows. Let ∆(T ′) ≥ 2. Then there
are three vertices vi−1, vi and vi+1 on a path as a subgraph of T ′. Let u be a leaf
adjacent to vi with f(u) = −1. Since vi is adjacent to the vertices vi−1 and vi+1 with
f(vi−1) = f(vi+1) = −1, then g : V → {−1, 1} defined by

g(v) =
{

1 if v = u,

f(v) if v 6= u

is an ISTDF of T with weight f(V ) + 2, a contradiction. Thus, ∆(T ′) ≤ 1. We now
distinguish two cases depending on ∆(T ′) = 0 or 1.
Case 1. ∆(T ′) = 1. Suppose to the contrary that there exists a vertex v in V \ (S∪L)
adjacent to a support vertex vk with degree one in T ′. Then it must be assigned
−1 under f . Let u be a leaf adjacent to vk with f(u) = −1. We define a function
h : V → {−1, 1} by

h(v) =
{

1 if v = u,

f(v) if v 6= u.
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Since vvk is an edge of T , then h is an ISTDF of T with weight f(V ) + 2, which
is a contradiction. Therefore all of vertices of T are leaves or support vertices. This
implies that S = {v1, v2} and v1v2 is an edge of T . Now let |Lv1 | be odd. Then
the function h′ : V → {−1, 1} that assigns 1 to b `1

2 c + 1 leaves of v1, b `2
2 c leaves

of v2 and −1 to all remaining vertices is an ISTDF of T with weight f(V ) + 2,
a contradiction. A similar argument shows that |Lv2 | is even, as well.
Case 2. ∆(T ′) = 0. If T is isomorphic to the star K1,n−1, then (b2) holds. Otherwise,
s ≥ 2. Suppose to the contrary that there exists a support vertex w adjacent to at
least two vertices u1, u2 ∈ V \ (L ∪ S) and u is a leaf adjacent to w with f(u) = −1.
Since f(u1) = f(u2) = −1, then r : V → {−1, 1} defined by

r(v) =
{

1 if v = u,

f(v) if v 6= u

is an ISTDF of T with weight f(V ) + 2, which is a contradiction. Moreover, if u is
a vertex in V \ (L ∪ S) with no neighbor in S then the function r′ : V → {−1, 1} for
which r′(u) = 1 and r′(v) = f(v) for all remaining vertices is an ISTDF of T with
weight f(V ) + 2, this contradicts the fact that f is a maximum ISTDF of T . Finally,
the proof of the fact that |Lw| is even for all support vertex w is similar to that
of Case 1.

These two cases imply that T satisfies (b1) and (b2).
Conversely, suppose that T ∈ Ω and f : V → {−1, 1} is an ISTDF of T with

weight
f(V ) = γ0

st(T ) > −n+ 2
(⌊`1

2

⌋
+ . . .+

⌊`s
2

⌋)
. (4.1)

By Lemma 4.2, we may assume that f assigns 1 to at least b `i2 c leaves ui1, . . . , uib `i2 c
of the support vertex vi, for 1 ≤ i ≤ s. The inequality (4.1) shows that there exists
a vertex u ∈ V \ ∪si=1{ui1, . . . , uib `i2 c

} such that f(u) = 1. Since all support vertices
must be assigned −1 under f , then u ∈ Lvi or u is a vertex in V \ (L ∪ S) adjacent
to a support vertex vi, for some 1 ≤ i ≤ s. It is not hard to see that this contradicts
the fact that T belongs to Ω and f(N(vi)) ≤ 0, for all 1 ≤ i ≤ s. This completes
the proof.
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