Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Magnetic activated carbon has been made from breadfruit skin waste using the impregnation method. The research began with the drying of breadfruit skin followed by carbonization. Furthermore, breadfruit skin carbon was activated using H3PO4. The final stage of making magnetic activated carbon is impregnation of Fe3O4 into activated carbon. The resulting magnetic activated carbon is then applied to treat Pb-containing wastewater. Characterization results show that the surface area of magnetic activated carbon is 1110.804 m2/g with a pore diameter of 18.59°A. The surface morphology of magnetic activated carbon shows the presence of Fe in the pore indicated by the presence of white color. Based on SEM EDX analysis, it is known that the Fe content on magnetic activated carbon is 16.6%. The ability of Pb absorption in waste based on the calculation of adsorption capacity is 6.635 mg/g.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
87--94
Opis fizyczny
BIbliogr. 19 poz., rys., tab.
Twórcy
autor
- Chemical Engineering Study Program, Surabaya Adhi Tama Institute of Technology, Indonesia, Arif Rahman Hakim Street 100, Surabaya, Indonesia
- Environmental Engineering Study Program, Surabaya Adhi Tama Institute of Technology, Arif Rahman Hakim Street 100, Surabaya, Indonesia
- Environmental Engineering Study Program, Surabaya Adhi Tama Institute of Technology, Arif Rahman Hakim Street 100, Surabaya, Indonesia
autor
- Chemical Engineering Study Program, Surabaya Adhi Tama Institute of Technology, Indonesia, Arif Rahman Hakim Street 100, Surabaya, Indonesia
autor
- Industrial Engineering Study Program, Surabaya Adhi Tama Institute of Technology, Arif Rahman Hakim Street 100, Surabaya, Indonesia
Bibliografia
- 1. Al-qodah, Z., Dweiri R., Khader M., Al-Sabbagh S., A-Shannag M., Qasrawi S., Al-Halawani M. (2023). Processing and charactization of magnetic composite of activated carbon, fly ash and beach sand as adsorbents for Cr(IV) removal. Case Studies in Chemical and Environmental Engineering, 7, 100333. https://doi.org/10.1016/j.cscee.2023.100333
- 2. Elangovan, T., Rosman, P.S., Appaturi, J.N., & Ramalingam, R.J. (2024). Effects of biosorption technique using various fruit waste activated carbon in improving chenderiang river water quality. Journal of Advanced Research in Applied Sciences and Engineering Technology, 33(2), 15–24. https://doi.org/10.37934/araset.33.2.1524
- 3. Lv, B., Chai, X., Deng, X., Jiao, F., Fang, C., Xi, B. (2024). Adsorptive removal of methylene blue by magnetic activated carbon particles in a magnetically stabilized fluidized bed. Process Safety and Environmental Protection, 186, 318–328. https://doi.org/10.1016/j.psep.2024.04.008
- 4. Mirzaee, E., & Sartaj, M. (2022). Activated carbon‐based magnetic composite as an adsorbent for removal of polycyclic aromatic hydrocarbons from aqueous phase: Characterization, adsorption kinetics and isotherm studies. Journal of Hazardous Materials Advances, 6(May), 100083. https://doi.org/10.1016/j.hazadv.2022.100083
- 5. Mirzaee, E. and Sartaj, M. (2022). Activated carbon-based magnetic compositeas an adsorbent for removal of polycyclic aromatic hydrocarbons from aqueous phase: Characterization, adsorption kinetic and isotherm studies. Journal of Hazardous Materials Advances, 6, 100083. https://doi.org/10.1016/j. hazadv.2022.100083
- 6. Rajendran, J., Panneerselvam, A., Ramasamy, S., Palanisamy, P. (2024). Methylene blue and methyl orange removal from wastewater by magnetic adsorbent based on activated carbon synthesised from watermelon shell. Desalination and Water Treatment, 317, 100040. https://doi.org/10.1016/j.dwt.2024.100040
- 7. Rashda, L.Y., Huihui, G., Li Zhaohui, H. R. (2024). Magnetic bio-composite based on zirconium and chitosan modified activated carbon from peanut husk with enhanced antibacterial and adsorptive potensial for alizarin red and congo red in wastewater. International Journal of Biological Macromolecules, 273, 132995. https://dor.org/10.1016/j.ijbiomac.2024.132995
- 8. Rodríguez-Sánchez, S., Díaz, P., Ruiz, B., González, S., Díaz-Somoano, M., & Fuente, E. (2022). Food industrial biowaste-based magnetic activated carbons as sustainable adsorbents for anthropogenic mercury emissions. Journal of Environmental Management, 312(November 2021). https://doi.org/10.1016/j.jenvman.2022.114897
- 9. Rodríguez-Sánchez S., Ruiz B., Martínez-Blanco D., Sánchez-Arenillas M., Diez M.A., Marco JF, Gorria P., Fuente E. (2021). Towards advanced industrial waste-based magnetic activated carbons with tunable chemical, textural and magnetic properties. Applied Surface Science, 551. https://doi.org/10.1016/j.apsusc.2021.149407
- 10. Saadi, A.S., Bousha, S., Riah, A., Belghit M., Belkhalfa, B., Barour, H. (2024). Efficient synthesis of magnetic carbon from oak pericarp for enhanced dyed adsorption: A one-step approach. Desalination and Water Treatment, 319, 100420. https://doi.org/10.1016/j.dwt.2024.100420
- 11. Adithya, S., Raja, S., Gokulakrishnan, M., Thivaharan, V., Vinayagam, R. (2024). Efficient adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) using biomass derived magnetic activated carbon nanocomposite in synthetic and simulated agricultural runoff water. Chemosphere, 361, 142513. https://doi.org/10.1016/j.chemosphere.2024.142513
- 12. Sanchez, S.R., Ruiz, B., Blanco-David, M., Diez, A.M., Marco J.F., Gorria, P., Fuente E. (2021). Towards advanced industri waste-based magnetic activated carbons with tunable chemical, textural and magnetic properties. Applied Surface Science, 551, 149407. https://doi.org/10.1016/j.apsusc.2021.149407
- 13. Sangkarak, S., Kittipongvises, S., Kitkaew, D., Chavenghong, S., Ittisupornrat, S., Phetrak A., Lohwacharin, J. (2024). Influence of the iron-oxide mass fractions of magnetic powdered activated carbon on its hexavalent chromium adsorption performance in water. Chemosphere, 364, 142997. https://doi.org/10.1016/j.chemosphere.2024.142997
- 14. Tran, T.P., Truong, A.T.T., Le, V.M.H., Vo, K.D., Nguyen, M.H., Nguyen, L.Q., Tran, T.T.-M., Nguyen, D.V. (2024). Facile preparation of magnetic activated carbon from Peltophorum pterocarpum flower for persulfate activation in methyl orange treatment. Bioresource Technology Reports, 27, 101953. https://doi.org/10.1016/j.biteb.2024.101953
- 15. Vaddi, D.R., Malla, R., Geddapu, S. (2024). Magnetic activated carbon: A promising approach for the removal of methylene blue from wastewater. Desalination and Water Treatment, 317, 100146. https://doi.org/10.1016/j,dwt.2024.100146
- 16. Wu, Z., Zhang, H., Ali, E., Shahab, A., Huang, H., Ullah, H., Zeng, H. (2023). Synthesis of novel magnetic activated carbon for effective Cr(IV) removal via synergistic adsorption and chemical. Environmental Technology & Innovation, 30, 103092. https://doi.org/10.1016/j.eti.2023.103092
- 17. Yang, F., Jin, C., Wang, S., Wang, Y., Wei, L., Zheng, L., Gu, H., Lam, S. S., Naushad, M., Li, C., & Sonne, C. (2023). Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. Chemosphere, 323(January), 138245. https://doi.org/10.1016/j.chemosphere.2023.138245
- 18. Yanti, I., Sationo, P.P., Winata, W.F., Anugrahwati, M., Anas A.K., Swasono, Y.A. (2023). Effectiveness of activated carbon magnetic composite from banana peel (Musa acuminata) for recovering iron metal ions. Case Studies in Chemical and Environmental Engineering, 8, 100378. https://doi.org/10.1016/j.cscee.2023.100378
- 19. Yao, Z., Hu, X., Wang, H., Li, J., Fang, S., Li, G. (2023). Magnetic Fe3O4/bamboo-based activated carbon/UiO-66 composite as an environmentally friendly and effective adsorbent for removal of Bisphenol A. Chemosphere, 340, 139696. https://doi.org/10.1016/j.chemosphere.2023.139696
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06f4a92d-fa14-4fc1-8e61-d31cf13c284f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.