PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Crush Analysis of Thin-Walled Aluminium Columns with Square Cross-Section and a Partial Foam Filling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of numerical crush simulations of thin-walled structures with a square cross-section and partial filling with foamed material. The influence of the length of the filling on the values of the energy efficiency index was analysed. Four types of foamed material were subjected to numerical analysis. The research was conducted using FEM in Abaqus 6.14 program. The obtained results were presented in the following forms: load-shortening characteristics, tables and diagrams. The best energy absorbing properties are shown by models filled with aluminium and polyethylene terephthalate foam.
Twórcy
  • Department of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
  • Department of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
Bibliografia
  • 1. Chen W., Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin walled structures in energy absorption. Thin Walled Structures, 39, 2001, 287–306,https://dx.doi.org/10.1016/ S02638231(01)00006–4
  • 2. Costas M. et al. Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization, International Journal of Mechanical Sciences 131–132, 2017, 205–217, https://doi.org/10.1016/j. ijmecsci.2017.07.004.
  • 3. Ferdynus M, Kotełko M. and Kral J. Energy absorption capability numerical analysis of thin-walled prismatic tubes with corner dents under axial impact. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 20(2), 2018, 252–259. http:// dx.doi.org/10.17531/ein.2018.2.10.
  • 4. Ferdynus M., Kotełko M. and Urbaniak M. Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact – Numerical and experimental study.144, 2019. https:// doi.org/10.1016/j.tws.2019.106239
  • 5. Hanssen A.G., Langseth M, Hopperstad O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 24, 2000, 475–507, https://doi.org/10.1016/S0734–743X(99)00170–0.
  • 6. Hanssen A.G., Langseth M, Hopperstad O.S. Static crushing of square aluminium extrusions with aluminium foam filler. International Journal of Mechanical Sciences, 41, 1999, 967–993, https://doi. org/10.1016/S0020–7403(98)00064–2.
  • 7. Mozafari H. et al, Finite element analysis of foam-filled honeycomb structures under impact loading and crashworthiness design, International Journal of Crashworthiness, 21:2, 2016,148–160, DOI: 10.1080/13588265.2016.1140710.
  • 8. Nikkhah H. at al, The effect of different shapes of holes on the crushing characteristics of aluminum square windowed tubes under dynamic axial loading, Thin-Walled Structures, 119, 2017, 412–420. http://dx.doi.org/10.1016/j.tws.2017.06.036
  • 9. Hsu S.S. and Jones N. Quasi-static and dynamic axial crushing of thinwalled circular stainless steel, mild steel and aluminium alloy tubes, International journal of crashworthiness, 9:2, 2004, 195–217, DOI: 10.1533/ijcr.2004.0282.
  • 10. Kotełko M., Ferdynus M., Jankowski J., Energy absorbing effectiveness– different approaches, Acta Mechanica et Automatica, 12(1), 2018, 54–59, DOI: 10.2478/ama-2018–0009.
  • 11. Liu Y.-C. and Day M.L., Simplified modelling of thin-walled box section beam, International Journal of Crashworthiness, 11:3, 2006, 263–272, DOI:10.1533/ijcr.2005.0409
  • 12. Masso-Moreu Y. and Mills N.J., Impact compression of polystyrene foam pyramids, International Journal of Impact Engineering, 28(6), 2003,653– 676. DOI:10.1016/S0734–743X(02)00148–3
  • 13. Mohammadiha O., H. Beheshti and Haji Aboutalebi F. Multi-objective optimisation of functionally graded honey comb filled crash boxes under oblique impact loading, International Journal of Crashworthiness, 20:1, 2015, 44–59, DOI: 10.1080/13588265.2014.970398.
  • 14. Reddy T.J., Rao Y.V.D. and Narayanamurthy V., Thin-walled structural configurations for enhanced crashworthiness, International Journal of Crashworthiness, 23:1, 2018, 57–73, DOI: 10.1080/13588265.2017.1306824
  • 15. Xu T. et al, Finite element analysis of indentation of aluminium foam and sandwich panels with aluminium foam core, Materials Science & Engineering A, 599, 2014, 125–133. DOI: 10.1016/j. msea.2014.01.080
  • 16. Zhang Y.et al, (2018) Crashworthiness study for multi-cell composite filling structures, International Journal of Crashworthiness, 23:1, 32–46, DOI: 10.1080/13588265.2017.1304169
  • 17. Zhou P. et al. Dynamic bending behaviour of magnesium alloy rectangular thin-wall beams filled with polyurethane foam, International Journal of Crashworthiness, 21:6, 2016, 597–613, DOI:10.1 080/13588265.2016.1208715
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ee4d62-5005-483a-8e00-7d8a0db5aaf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.