Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Spiking neural P systems with rules on synapses (RSSN P systems, for short) are a class of distributed and parallel computation models inspired by the way in which neurons process and communicate information with each other by means of spikes, where neurons only contain spikes and the evolution rules are on synapses. RSSN P systems have been proved to be Turing universal, using the strategy that restricts all the applied rules to consume the same number of spikes from the given neuron, termed as equal spikes consumption strategy. In this work, in order to avoid imposing the equal spikes consumption restriction on the application of rules, a new strategy for rule application, termed as sum spikes consumption strategy, is considered in RSSN P systems, where a maximal set of enabled rules from synapses starting from the same neuron is nondeterministically chosen to be applied, in the sense that no further synapse can use any of its rules, and the sum of these numbers of spikes that all the applied rules consume is removed from the neuron. In this way, the proposed strategy avoids checking whether all the applied rules consume the same number of spikes from the given neuron. The computation power of RSSN P systems working in the proposed strategy is investigated, and it is proved that such systems characterize the semilinear sets of natural numbers, i.e., such systems are not universal. Furthermore, RSSN P systems with weighted synapses working in the proposed strategy are proved to be Turing universal. These results show that the weight on synapses is a powerful ingredient of RSSN P systems in terms of the computation power, which makes RSSN P systems working in sum spikes consumption strategy become universal from non-universality.
Wydawca
Czasopismo
Rocznik
Tom
Strony
187--208
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
autor
- School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China
autor
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
autor
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
autor
- Department of Computer Science, University of Bucharest, Str. Academiei nr.14, sector 1, C.P. 010014, Bucureşti, România
Bibliografia
- [1] Yegnanarayana B. Artificial Neural Networks. PHI Learning Pvt. Ltd.; 2009. ISBN-10: 8120312538.
- [2] Mitchell M. An Introduction to Genetic Algorithms. MIT press; 1998. ISBN:0262631857.
- [3] Beni G, Wang J. Swarm intelligence in cellular robotic systems. In: Dario P, Sandini G, Aebischer P, editors. Robots and Biological Systems: Towards a New Bionics?. vol. 102. Berlin, Heidelberg: Springer Berlin Heidelberg; 1993. p. 703–712. Available from: https://doi.org/10.1007/978-3-642-58069-7$\_$38.
- [4] Ehrenfeucht A, Rozenberg G. Reaction systems. Fundamenta Informaticae. 2007;75(1-4):263–280.
- [5] Păun G. Computing with membranes. Journal of Computer and System Sciences. 2000;61(1):108–143. Available from: https://doi.org/10.1006/jcss.1999.1693.
- [6] Ibarra OH, Dang Z, Egecioglu O. Catalytic P systems, semilinear sets, and vector addition systems. Theoretical Computer Science. 2004;312(2-3):379–399. Available from: https://doi.org/10.1016/j.tcs.2003.10.028.
- [7] Martín-Vide C, Păun G, Pazos J, Rodríguez-Patón A. Tissue P systems. Theoretical Computer Science. 2003;296(2):295–326. Available from: https://doi.org/10.1016/S0304-3975(02)00659-X.
- [8] Ionescu M, Păun G, Yokomori T. Spiking neural P systems. Fundamenta Informaticae. 2006;71(2–3):279–308.
- [9] Song B, Zhang C, Pan L. Tissue-like P systems with evolutional symport/antiport rules. Information Sciences. 2017;378:177–193. Available from: https://doi.org/10.1016/j.ins.2016.10.046.
- [10] Păun G, Păun R. Membrane computing and economics: Numerical P systems. Fundamenta Informaticae. 2006;73(1, 2):213–227.
- [11] Manca V, Bianco L. Biological networks in metabolic P systems. BioSystems. 2008;91(3):489–498. Available from: https://doi.org/10.1016/j.biosystems.2006.11.009.
- [12] Colomer MÁ, Margalida A, Pérez-Jiménez MJ. Population dynamics P system (pdp) models: A standardized protocol for describing and applying novel bio-inspired computing tools. PloS one. 2013;8(4):e60698. Available from: https://doi.org/10.1371/journal.pone.0060698.
- [13] Zhang Z, Pan L. Numerical P systems with thresholds. International Journal of Computers Communications & Control. 2016;11(2):292–304. Available from: http://dx.doi.org/10.15837/ijccc.2016.2.2262.
- [14] Păun G. Membrane Computing: An Introduction. Springer Science & Business Media; 2012. ISBN:978-3-642-56196-2.
- [15] Păun G, Rozenberg G, Salomaa A, editors. The Oxford Handbook of Membrane Computing. New York: Oxford University Press; 2010. ISBN:0199556679.
- [16] Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks. 1997;10(9):1659–1671. Available from: https://doi.org/10.1016/S0893-6080(97)00011-7.
- [17] Maass W, Bishop CM. Pulsed Neural Networks. MIT Press; 2001. ISBN: 9780262133500.
- [18] Wang J, Hoogeboom HJ, Pan L, Păun G, Pérez-Jiménez MJ. Spiking neural P systems with weights. Neural Computation. 2010;22(10):2615–2646. doi:10.1162/NECO a 00022.
- [19] Zeng X, Pan L, Pérez-Jiménez MJ. Small universal simple spiking neural P systems with weights. Science China Information Sciences. 2014;57(9):1–11. doi:10.1007/s11432-013-4848-z.
- [20] Zhang X, Pan L, Păun A. On the universality of axon P systems. IEEE Transactions on Neural Networks and Learning Systems. 2015;26(11):2816–2829. doi:10.1109/TNNLS.2015.2396940.
- [21] Wu T, Zhang Z, Păun G, Pan L. Cell-like spiking neural P systems. Theoretical Computer Science. 2016;623:180–189. doi:10.1016/j.tcs.2015.12.038.
- [22] Cabarle FGC, Adorna HN, Pérez-Jiménez MJ, Song T. Spiking neural P systems with structural plasticity. Neural Computing and Applications. 2015;26(8):1905–1917. doi:10.1007/s00521-015-1857-4.
- [23] Alhazov A, Freund R, Ivanov S, Oswald M, Verlan S. Extended spiking neural P systems with white hole rules. In: Macías-Ramos LF, Păun G, Riscos-Núñez A, Valencia-Cabrera L, editors. Proceedings of the 13th Brainstorming Week on Membrane Computing, Sevilla, Spain, February 2-6, 2015. Sevilla: Fénix Editora; 2015. p. 45–62. ISBN: 9788494436628.
- [24] Song T, Pan L, Păun G. Spiking neural P systems with rules on synapses. Theoretical Computer Science. 2014;529:82–95. doi:10.1016/j.tcs.2014.01.001.
- [25] Chen H, Freund R, Ionescu M, Păun G, Pérez-Jiménez MJ. On string languages generated by spiking neural P systems. Fundamenta Informaticae. 2007;75(1–4):141–162.
- [26] Păun A, Păun G. Small universal spiking neural P systems. BioSystems. 2007;90(1):48–60. doi:10.1016/j.biosystems.2006.06.006.
- [27] Cavaliere M, Ibarra OH, Păun G, Egecioglu O, Ionescu M, Woodworth S. Asynchronous spiking neural P systems. Theoretical Computer Science. 2009;410(24):2352–2364. doi:10.1016/j.tcs.2009.02.031.
- [28] Ibarra OH, Woodworth S. Characterizations of some classes of spiking neural P systems. Natural Computing. 2008;7(4):499–517. doi:10.1007/s11047-008-9084-x.
- [29] Song T, Pan L, Păun G. Asynchronous spiking neural P systems with local synchronization. Information Sciences. 2013;219:197–207. doi:10.1016/j.ins.2012.07.023.
- [30] Ibarra OH, Păun A, Rodríguez-Patón A. Sequential SNP systems based on min/max spike number. Theoretical Computer Science. 2009;410(30):2982–2991. doi:10.1016/j.tcs.2009.03.004.
- [31] Jiang K, Song T, Pan L. Universality of sequential spiking neural P systems based on minimum spike number. Theoretical Computer Science. 2013;499:88–97. doi:10.1016/j.tcs.2013.07.006.
- [32] Cabarle FGC, Adorna HN, Pérez-Jiménez MJ. Sequential spiking neural P systems with structural plasticity based on max/min spike number. Neural Computing and Applications. 2016;27(5):1337–1347. doi:10.1007/s00521-015-1937-5.
- [33] Ionescu M, Păun G, Yokomori T. Spiking neural P systems with an exhaustive use of rules. International Journal of Unconventional Computing. 2007;3(2):135–153.
- [34] Zhang X, Wang B, Pan L. Spiking neural P systems with a generalized use of rules. Neural Computation. 2014;26(12):2925–2943. doi:10.1162/NECO a 00665.
- [35] Gutiérrez Naranjo MÁ, Leporati A. Solving numerical NP-complete problems by spiking neural P systems with pre–computed resources. In: Díaz-Pernil D, Graciani C, Gutiérrez-Naranjo MA, Păun G, Pérez-Hurtado I, Riscos-Núñez A, editors. Proceedings of the 6th Brainstorming Week on Membrane Computing, Sevilla, Spain, February 4-8, 2008. Sevilla: Fénix Editora; 2008. p. 193–210. doi:10.1007/978-3-642-11467-0 _24.
- [36] Leporati A, Mauri G, Zandron C, Păun G, Pérez-Jiménez MJ. Uniform solutions to SAT and Subset Sum by spiking neural P systems. Natural computing. 2009;8(4):681. doi:10.1007/s11047-008-9091-y.
- [37] Pan L, Păun G, Pérez-Jiménez MJ. Spiking neural P systems with neuron division and budding. Science China Information Sciences. 2011;54(8):1596–1607. doi:10.1007/s11432-011-4303-y.
- [38] Ishdorj TO, Leporati A. Uniform solutions to SAT and 3-SAT by spiking neural P systems with precomputed resources. Natural Computing. 2008;7(4):519–534. doi:10.1007/s11047-008-9081-0.
- [39] Leporati A, Gutiérrez-Naranjo MA. Solving Subset Sum by spiking neural P systems with pre-computed resources. Fundamenta Informaticae. 2008;87(1):61–77. ISBN: 0169-2968.
- [40] Ishdorj TO, Leporati A, Pan L, Zeng X, Zhang X. Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science. 2010;411(25):2345–2358. doi:10.1016/j.tcs.2010.01.019.
- [41] Sosík P, Rodríguez-Patón A, Cienciala L. On the power of families of recognizer spiking neural P systems. International Journal of Foundations of Computer Science. 2011;22(01):75–88. doi:10.1142/S0129054111007848.
- [42] Ionescu M, Sburalan D. Several applications of spiking neural P systems. In: Gutiérrez-Naranjo MA, Păun G, Romero-Jiménez A, Riscos-Núñez A, editors. Proceedings of the 5th Brainstorming Week on Membrane Computing, Sevilla, Spain, January 29 - February 2, 2007. Sevilla: Fénix Editora; 2007. p. 213–225.
- [43] Zeng X, Song T, Zhang X, Pan L. Performing four basic arithmetic operations with spiking neural P systems. IEEE Transactions on Nanobioscience. 2012;11(4):366–374. doi:10.1109/TNB.2012.2211034.
- [44] Song T, Zheng P, Wong MD, Wang X. Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Information Sciences. 2016;372:380–391. doi:10.1016/j.ins.2016.08.055.
- [45] Diaz C, Sanchez G, Duchen G, Nakano M, Perez H. An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing. 2016;189:130–134. doi:10.1016/j.neucom.2015.12.086.
- [46] Peng H, Wang J, Pérez-Jiménez MJ, Wang H, Shao J, Wang T. Fuzzy reasoning spiking neural P systems for fault diagnosis. Information Sciences. 2013;235:106–116. doi:10.1016/j.ins.2012.07.015.
- [47] Wang T, Zhang G, Zhao J, He Z, Wang J, Pérez-Jiménez MJ. Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems. 2015;30(3):1182–1194. doi:10.1109/TPWRS.2014.2347699.
- [48] Díaz-Pernil D, Peña-Cantillana F, Gutiérrez-Naranjo MA. A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing. 2013;115:81–91. doi:10.1016/j.neucom.2012.12.032.
- [49] Song T, Pan L. Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Transactions on Nanobioscience. 2015;14(1):38–44. doi:10.1109/TNB.2014.2367506.
- [50] Song T, Pan L. Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Transactions on NanoBioscience. 2015;14(4):465–477. doi:10.1109/TNB.2015.2402311.
- [51] Rozenberg G, Salomaa A, editors. Handbook of Formal Languages. vol. 1–3. Berlin: Springer-Verlag; 1997. ISBN:978-3-662-07675-0.
- [52] Hopcroft JE, Motwani R, Ullman JD, editors. Introduction to Automata Theory, Languages, and Computation (third edition). New Jersey: Addison Wesley, Pearson Education India; 2001. ISBN 10:1-292-03905-1.
- [53] Pan L, Zeng X, Zhang X, Jiang Y. Spiking neural P systems with weighted synapses. Neural Processing Letters. 2012;35(1):13–27. doi:10.1007/s11063-011-9201-1.
- [54] Pan L, Wang J, Hoogeboom HJ. Spiking neural P systems with astrocytes. Neural Computation. 2012;24(3):805–825. doi:10.1162/NECO_a_00238.
- [55] Minsky ML. Computation: Finite and Infinite Machines. Prentice–Hall, Englewood Cliffs, N.J.; 1967. ISBN-13:978-0131655638.
- [56] Ionescu M, Păun G, Pérez-Jiménez MJ, Yokomori T. Spiking neural dP systems. Fundamenta Informaticae. 2011;111(4):423–436. doi:10.3233/FI-2011-571.
- [57] Song T, Pan L. Spiking neural P systems with request rules. Neurocomputing. 2016;193:193–200. doi:10.1016/j.neucom.2016.02.023.
- [58] Neary T. A boundary between universality and non-universality in extended spiking neural P systems. In: Dediu AH, Fernau H, Martín-Vide C, editors. Proceedings of the 4th International Conference on Language and Automata Theory and Applications, LATA 2010, Trier, Germany, May 24-28, 2010. vol.6031. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 475–487. doi:10.1007/978-3-642-13089-2_0.
- [59] Metta VP, Raghuraman S, Krithivasan K. Small universal spiking neural P systems with cooperating rules as function computing devices. In: Gheorghe M, Rozenberg G, Salomaa A, Sosík P, Zandron C, editors. Proceedings of the 15th International Conference on Membrane Computing, CMC 2014, Prague, Czech Republic, August 20-22, 2014, Revised Selected Papers. vol. 8961. Cham: Springer International Publishing; 2014. p. 300–313. doi:10.1007/978-3-319-14370-5_19.
- [60] Cabarle FGC, Adorna HN, Pérez-Jiménez MJ. Notes on spiking neural P systems and finite automata. Natural Computing. 2016;15(4):533–539. doi:10.1007/s11047-016-9563-4.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ea2e89-6dfa-4ef1-a6d9-5fba17113528