PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological Possibilities of the Carbide Tools Application for Precision Machining of WCLV Hardened Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Precision milling of free (curved) surfaces with the use of monolithic milling cutters is used in the production of hardened steel elements such as dies, molds, or press tools. Precision milling processes are carried out with the following milling parameters: axial cutting depth ap <0.3 mm, cutting width ae <0.5 mm and the required machining accuracy below 40 µm. The quality of the obtained surfaces in injection molds is directly transferred to the quality of the molded part. One of the key criteria for the manufactured elements is the surface quality which is mainly assessed by the roughness parameters. Due to the use of carbide tools high reliability and quality of machining is obtained which allows to eliminate the grinding process. In precision milling processes, due to the very small radius of the cutting edge and the cross-sections of the cutting layers, the conditions that must be met for the decohesion process to occur are fundamentally diff erent from macro-scale. The minimum value range of ap and ae parameters was determined in a carried-out experiment, which allows for stable and repeatable machining. The tests were carried out with double-edge shank cutters with a diameter of 6 mm on a workpiece made out of WCVL hardened steel 45–47 HRC. Recommended machining conditions have been defi ned to ensure the required technological quality of the surface layer. The research was fi nanced under the research project POIR.01.01.01-000890/17 co-fi nanced by the European Union from the European Regional Development Fund.
Słowa kluczowe
Twórcy
  • Chair of Production Engineering, Cracow University of Technology, Cracow, Poland
  • Chair of Production Engineering, Cracow University of Technology, Cracow, Poland
  • Chair of Production Engineering, Cracow University of Technology, Cracow, Poland
  • Chair of Production Engineering, Cracow University of Technology, Cracow, Poland
  • Limatherm S.A., ul. Tarnowska 1, 34-600 Limanowa, Poland
Bibliografia
  • 1. Darshan C., Singh P., Saini S. Comparative Evaluation of Untextured and Textured WC Inserts Under Dry and Near Dry Machining of C45 Steel. Int. Journal of General Engineering and Technology. 2017; 6(5): 1–16
  • 2. Irfaan M., Temesgen A.D., Tsegay M.M. Application of Taguchi Method & Anova in turning of AISI 1045 to improve surface roughness by Optimize cutting factor. American Journal of Engineering Research. 2015; 4(12): 120–125.
  • 3. Krajewska-Śpiewak J., Gawlik J. A method for determination of the minimal thickness of the cutting layer during precision machining performed with the indexable cutting tools, Trans Tech Publications. Solid State Phenomena. 2017; 261: 50–57.
  • 4. Nguyen T.D., Tran N.T., Hoang T.D., Nguyen N.T., Quy T.D., Thien N.V. Cutting Forces and Surface Roughness in Face-Milling of SKD61 Hard Stee, Strojniški vestnik. Journal of Mechanical Engineering. 2019; 65(6): 375–385. DOI:10.5545/svjme.2019.6057
  • 5. Storch B., Tomkiewicz-Zawada A. Distribution of unit forces on the tool edge rounding in the case of finishing turning. Int J Adv Manuf Technol. 2012; 60: 453–461. DOI: 10.1007/s00170-011-3617-7
  • 6. Twardowski P., Hamrol A., Znojkiewicz N., Wojciechowski S. An improved cutting force and surface topography prediction model in end milling. International Journal of Machine Tools and Manufacture. 2007; 47(7): 1263–1275. DOI: 10.1016/j.imachtools.2006.08.021
  • 7. Wojciechowski S., Wiackiewicz M., Krolczyk G.M. Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement. 2018; 129: 686–694. DOI: 10.1016/j.measurement.2018.07.058
  • 8. Wojciechowski S., Maruda R.W., Barrans S., Niesłony P., Krolczyk G.M. Optimisation of machining parameters during ball end milling of hardened steel with various surface inclinations. Measurement. 2017; 111: 18–28. DOI: 10.1016/j.measurement.2017.07.20
  • 9. Fallböhmer P., Rodrìguez C.A., Özel T., Altan T. High-speed Machining of Cast Iron and Alloy Steels for Die and Mold Manufacturing, Journal of Materials Processing Technology. 2000; 98 104–115.
  • 10. Murugan Gopalsamy B., Mondal B., Ghosh S., Arntz K., Klocke F. Experimental investigations while hard machining of DIEVAR tool steel (50 HRC), Int J Adv Manuf. Technol. 2010; 51: 853– 869. DOI: 10.1007/s00170-010-2688-1
  • 11. Hawryluk M., Dolny A., Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures, Archives of Civil and Mechanical Engineering. 2018; 18(2): 465–478.
  • 12. Grabowski M., Skoczypiec S., Wyszynski D. A Study on Microturning with Electrochemical Assistance of the Cutting Process. Micromachines. 2018; 9: 357. DOI: 10.3390/mi9070357
  • 13. Irfaan M., Temesgen A.D., Tsegay M.M. Application of Taguchi Method & Anova in turning of AISI 1045 to improve surface roughness by Optimize cutting factor. American Journal of Engineering Research (AJER). 2015; 4(12): 120–125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06e30f02-d811-4d26-866e-ea415fea6b41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.