PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving products considering customer expectations and life cycle assessment (LCA)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamically identifying key product changes is a challenge for enterprises. It is even more complicated if companies strive for the sustainable development of their activities. Therefore, the aim of the article was to develop a method to help predict the direction of product improvement, taking into account its quality level and environmental impact during the life cycle (LCA). The method was based on the design phase of LCA and the process of obtaining and processing customer expectations. Techniques supporting the developed method were: a questionnaire, a seven-point Likert scale, a standardised list of criteria for assessing the product life cycle, the WSM method, and a scale of relative states. The product analysis was carried out according to modified criteria states, which were evaluated according to: i) customer satisfaction (quality criteria), ii) environmental impact of LCA (environmental criteria), and iii) importance of quality and environmental criteria for customers. The originality of the method is to support the product improvement process to make it environmentally friendly within LCA and, at the same time, satisfactory to customers in terms of quality. The method will be used mainly by SMEs that want to initially predict the environmental impact of a product, including taking into account customer expectations.
Wydawca
Rocznik
Strony
19--27
Opis fizyczny
Bibliogr. 47 poz., tab.
Twórcy
  • Rzeszow University of Technology; Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Rzeszow University of Technology; Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
Bibliografia
  • 1. Alejandrino, C., Mercante, I.T., Bovea, M.D., 2022. Combining O-LCA and O-LCC to support circular economy strategies in organizations: Methodology and case study, J Clean Prod, 336, 130365. DOI: 10.1016/j.jclepro.2022.130365
  • 2. Ali, A., Hafeez, Y., Hussain, S., Yang, S., 2020. Role of Requirement Prioritization Technique to Improve the Quality of Highly-Configurable Systems, IEEE Access, 8, 27549–27573. DOI: 10.1109/ACCESS.2020.2971382
  • 3. Borkowski, S., Ulewicz, R., Selejdak, J., Konstanciak, M., Klimecka-Tatar, D. 2012. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology, METAL 2012 - Conference Proceedings, 21st International Conference on Metallurgy and Materials, 1722-1728
  • 4. Calado, E.A., Leite, M., Silva, A., 2019. Integrating life cycle assessment (LCA) and life cycle costing (LCC) in the early phases of aircraft structural design: an elevator case study, Int J Life Cycle Assess, 24, 2091-2110, DOI: 10.1007/s11367-019-01632-8
  • 5. Chen, C.-H., Khoo, L.P., Yan, W., 2003. Evaluation of multicultural factors from elicited customer requirements for new product development, Res Eng Des, 14, 119-130, DOI: 10.1007/s00163-003-0032-6
  • 6. Czerwińska, K., Pacana, A., 2019. Analysis of the implementation of the identification system for directly marked parts - DataMatrix code, Production Engineering Archives 23, 22-26. DOI: 10.30657/pea.2019.23.04
  • 7. El Badaoui,M. Touzani, A. 2022. AHP QFD methodology for a recycled solar collector, Production Engineering Archives,28(1) 30-39.DOI: 10.30657/pea.2022.28.04
  • 8. Garcia-Ayllon, S., Hontoria, E., Munier, N., 2021. The Contribution of MCDM to SUMP: The Case of Spanish Cities during 2006-2021, Int J Environ Res Public Health, 19, 294, DOI: 10.3390/ijerph19010294
  • 9. Hemeida, M.G., Hemeida, A.M., Senjyu, T., Osheba, D., 2022. Renewable Energy Resources Technologies and Life Cycle Assessment: Review. Energies (Basel), 15, 9417. DOI: 10.3390/en15249417
  • 10. Idzikowski, A., Cierlicki, T., 2021. Economy and energy analysis in the operation of renewable energy installations - A case study, Production Engineering Archives, 27(2), 90-99
  • 11. Korzynski, M., Pacana, A., 2010. Centreless burnishing and influence of its parameters on machining effects, J Mater Process Technol, 210, 1217-1223. DOI: 10.1016/j.jmatprotec.2010.03.008
  • 12. Krynke, M., Ivanowa, T., Revenko, N., 2022. Factors, Increasing the Efficiency of Work of Maintenance, Repair and Operation Units of Industrial Enterprises, Management Systems in Production Engineering, 30(1), 91-97, DOI: 10.2478/mspe-2022-0012
  • 13. Kuzior, A., Kwilinski, A., Tkachenko, V., 2019, Sustainable development of organizations based on the combinatorial model of artificial intelligence, Entrepreneurship and Sustainability Issues, 7(2), 1353-1376; DOI: 10.9770/jesi.2019.7.2(39)
  • 14. Lagerstedt, J., Luttropp, C., Lindfors, L.-G., 2003. Functional priorities in LCA and design for environment, Int J Life Cycle Assess, 8, 160-166, DOI: 10.1007/BF02978463
  • 15. Lawor, B., Hornyak, M., 2012. SMART Goals: How The Application Of Smart Goals Can Contribute To Achievement Of Student Learning Outcomes, Developments in Business Simulation and Experiential Learning, 39, 259-267.
  • 16. Leda, P., Idzikowski, A., Piasecka, I., Bałdowska-Witos, P.,; Cierlicki, T., Zawada, M., 2023. Management of Environmental Life Cycle Impact Assessment of a Photovoltaic Power Plant on the Atmosphere, Water, and Soil Environment. Energies, 16, 4230, DOI: 10.3390/en16104230
  • 17. Lee, Chen, Lin, Li, Zhao, 2019. Developing a Quick Response Product Configuration System under Industry 4.0 Based on Customer Requirement Modelling and Optimization Method, Applied Sciences, 9, 5004, DOI: 10.3390/app9235004
  • 18. Liu, F., Dai, Y., 2022. Product Processing Quality Classification Model for Small-Sample and Imbalanced Data Environment, Comput Intell Neurosci, 2022, 1-16, DOI: 10.1155/2022/9024165
  • 19. Lucchi, E., Polo Lopez, C.S., Franco, G., 2020. A conceptual framework on the integration of solar energy systems in heritage sites and buildings, IOP Conf Ser Mater Sci Eng, 949, 012113, DOI: 10.1088/1757-899X/949/1/012113
  • 20. Markatos, D.N., Malefaki, S., Pantelakis, S.G., 2023. Sensitivity Analysis of a Hybrid MCDM Model for Sustainability Assessment-An Example from the Aviation Industry, Aerospace, 10, 385, DOI: 10.3390/aerospace10040385
  • 21. Means, P., Guggemos, A., 2015. Framework for Life Cycle Assessment (LCA) Based Environmental Decision Making During the Conceptual Design Phase for Commercial Buildings, Procedia Eng, 118, 802-812, DOI: 10.1016/j.proeng.2015.08.517
  • 22. Mushtaq, F., Farooq, M., Tirkey, A.S., Sheikh, B.A., 2023. Analytic Hierarchy Process (AHP) Based Soil Erosion Susceptibility Mapping in Northwestern Himalayas: A Case Study of Central Kashmir Province, Conservation, 3, 32-52, DOI: 10.3390/conservation3010003
  • 23. Nando, F.T., Amrina, E., Alfadhlani, 2020. Prioritizing design requirements on traditional arrow using quality function deployment, 040020, DOI: 10.1063/5.0000983
  • 24. Neramballi, A., Sakao, T., Willskytt, S., Tillman, A.-M., 2020. A design navigator to guide the transition towards environmentally benign product/service systems based on LCA results, J Clean Prod, 277, 124074, DOI: 10.1016/j.jclepro.2020.124074
  • 25. Olejarz, T., Siwiec, D., Pacana, A., 2022. Method of Qualitative-Environmental Choice of Devices Converting Green Energy, Energies (Basel), 15, 8845, DOI: 10.3390/en1523884
  • 26. Ostasz, G., Siwiec, D., Pacana, A., 2022. Universal Model to Predict Expected Direction of Products Quality Improvement, Energies (Basel), 15, DOI: 10.3390/en15051751
  • 27. Pacana, A., Siwiec, D., 2021. Universal Model to Support the Quality Improvement of Industrial Products, Materials, 14, 7872, DOI: 10.3390/ma14247872
  • 28. Pacana, A., Siwiec, D., 2022a. Method of Determining Sequence Actions of Products Improvement, Materials, 15, 6321, DOI: 10.3390/ma15186321
  • 29. Pacana, A., Siwiec, D., 2022b. Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations, Energies (Basel), 15, 1101, DOI: 10.3390/en15031101
  • 30. Proske, M., Finkbeiner, M., 2020. Obsolescence in LCA-methodological challenges and solution approaches, Int J Life Cycle Assess, 25, 495-507, DOI: 10.1007/s11367-019-01710-x
  • 31. Putman, V.L., Paulus, P.B., 2009. Brainstorming, Brainstorming Rules and Decision Making, J Creat Behav, 43, 29-40, DOI: 10.1002/j.2162-6057.2009.tb01304.x
  • 32. Sánchez-Pantoja, N., Vidal, R., Pastor, M., 2021. EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact, Energies (Basel), 14, 1627, DOI: 10.3390/en14061627
  • 33. Sánchez-Pantoja, N., Vidal, R., Pastor, M.C., 2018. Aesthetic impact of solar energy systems, Renewable and Sustainable Energy Reviews, 98, 227-238, DOI: 10.1016/j.rser.2018.09.021
  • 34. Shen, Y., Zhou, J., Pantelous, A.A., Liu, Y., Zhang, Z., 2022. A voice of the customer real-time strategy: An integrated quality function deployment approach, Comput Ind Eng, 169, 108233, DOI: 10.1016/j.cie.2022.108233
  • 35. Singh, A., Olsen, S.I., Pant, D., 2013. Importance of Life Cycle Assessment of Renewable Energy Sources, 1-11, DOI: 10.1007/978-1-4471-5364-1_1
  • 36. Siwiec, D., Bełch, P., Hajduk-Stelmachowicz, M., Pacana, A., Bednárová, L., 2022. Determinants Of Making Decisions In Improving The Quality Of Products, Scientific Papers of Silesian University of Technology. Organization and Management Series 2022, 497–507, DOI: 10.29119/1641-3466.2022.157.31
  • 37. Siwiec, D., Pacana, A., 2021a. A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customers’ Expectations, Sustainability, 13, 5542, DOI: 10.3390/su13105542
  • 38. Siwiec, D., Pacana, A., 2021b. Model of Choice Photovoltaic Panels Considering Customers’ Expectations, Energies (Basel), 14, 5977, DOI: 10.3390/en14185977
  • 39. Siwiec, D., Pacana, A., 2021c. Model supporting development decisions by considering qualitative-environmental aspects, Sustainability (Switzerland), 13(16), 9067, DOI: 10.3390/su13169067
  • 40. Siwiec, D., Pacana, A., 2022. A New Model Supporting Stability Quality of Materials and Industrial Products, Materials 15, 4440, DOI: 10.3390/ma15134440
  • 41. Tran, N.H., Yang, S.-H., Tsai, C.Y., Yang, N.C., Chang, C.-M., 2021. Developing Transportation Livability-Related Indicators for Green Urban Road Rating System in Taiwan, Sustainability, 13, 14016, DOI: 10.3390/su132414016
  • 42. Ulewicz, R. 2018. Customer satisfaction survey in the furniture industry, Increasing the Use of Wood in the Global Bio-Economy - Proceedings of Scientific Papers, 19-29
  • 43. Ulewicz, R., Siwiec, D., Pacana, A., Tutak, M., Brodny, J., 2021. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector, Energies (Basel), 14, 2386. DOI: 10.3390/en14092386
  • 44. Ulewicz, R., Siwiec, D., Pacana, A. 2023. Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA). Energies, 16, 8122. https://doi.org/10.3390/en16248122
  • 45. Various authors, Pr.S., 2020. SimaPro database manual - Methods library, PRé Sustainability B.V. 4.15.
  • 46. Varun, Bhat, I.K., Prakash, R., 2009. LCA of renewable energy for electricity generation systems-A review, Renewable and Sustainable Energy Reviews 13, 1067–1073, DOI: 10.1016/j.rser.2008.08.004
  • 47. Ziemińska-Stolarska, A., Pietrzak, M., Zbiciński, I., 2021. Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels-State-of-the-Art. Energies (Basel), 14, 3143, DOI: 10.3390/en14113143
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06e305fd-be5d-4b4a-9725-cd302889a475
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.