PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The evaluation of energy from grapevine shoots used as biomass depending on the cultivar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article examines the influence of physicochemical traits on yield depending on the variety and year of cultivation. Four common to Poland grape cultivars, i.e. ‘Regent’, ‘Rondo’, ‘Seyval Blanc’, and ‘Solaris’, were evaluated by analysing, among others, number of clusters per bush, their weight, number of berries, and the yield per hectare, number of woody shoots, weight of woody shoots, and the diameter of woody shoots. Energy and emission parameters were evaluated by conducting technical evaluation (lower heating value, ash content, volatile matters content, moisture content, fixed carbon) and elemental analysis (carbon, nitrogen, hydrogen, sulphur and oxygen contents) of one-year, two-year and three-year vine shoots. In addition, emission factors for CO, CO2, NOx, SO2 and dust were estimated. The study showed that there was no significant differences between years under study (2020, 2021 and 2022) and energy and emission parameters. It was observed that the highest LHV (lower heating value) occurred in the ‘Regent’ cultivar while the lowest level in the ‘Rondo’ cultivar. As regards energy-emission parameters, a significant influence of cultivar (‘Solaris’, ‘Rondo’, ‘Seyval Blanc’ and ‘Regent’) was shown on the parameters studied except for nitrogen content and NOx emission index. The interaction of year and cultivar showed no significant differences except for the moisture content.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
120--128
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Science, Lublin, Poland
  • University of Life Science, Institute of Horticulture Production, Lublin, Poland
autor
  • University of Life Science, Department of Power Engineering and Transportation, 28 Głęboka St., 20-612 Lublin, Poland
Bibliografia
  • Alves, J.L.F. et al. (2020) “Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics,” Renewable Energy, 155, pp. 1328–1338. Available at: https://doi.org/10.1016/j.renene.2020.04.025.
  • Atucha, A., Hedtcke, J. and Workmaster, B.A. (2018) “Evaluation of cold-climate interspecific hybrid wine grape cultivars for the upper Midwest,” Journal of the American Pomological Society, 72, pp. 80–93.
  • Blasi di, C., Tanzi, V. and Lanzetta, M.A. (1997) “Study on the production of agricultural residues in Italy,” Biomass Bioenergy, 12, pp. 321–331. Available at: https://doi.org/10.1016/S0961-9534(96)00073-6.
  • Borycka, B. (2008) Towaroznawcze studium nad żywnościową i energetyczną użytecznością bogatobłonnikowych odpadów przemysłu owocowo-warzywnego [Commodity study on food and energy utilization of rich-food waste of the fruit and vegetables industry] Politechnika Radomska, Monografie, 112. Radom: Uniwersytet Technologiczno-Humanistyczny w Radomiu.
  • Broome, J. and Warner, K. (2008) “Agro-environmental partnerships facilitate sustainable wine-grape production and assessment,” California Agriculture, 62(4), pp. 133–141. Available at: https://webpages.scu.edu/ftp/kwarner/ageco-BroomeWarnerCalAg.pdf (Accessed: February 21, 2023).
  • Burg, P. et al. (2017) “Review of energy potential of the wood biomass of orchards and vineyards in the Czech Republic,” Research in Agricultural Engineering, 63, S1–S7. Available at: https://doi.org/10.17221/30/2017-RAE.
  • Casanova-Gascón, J. et al. (2019) “Behavior of vine varieties resistant to fungal diseases in the Somontano Region,” Agronomy, 9(11), 738. Available at: https://doi.org/10.3390/agronomy9110738.
  • Choudhury, N.D. et al. (2021) “Characterization and evaluation of energy properties of pellets produced from Coir pith, Saw dust and Ipomoea carnea and their blends,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–18. Available at: https://doi.org/10.1080/15567036.2020.1871446.
  • Clark, M.D. (2020) “Development of cold climate grapes in the Upper Midwestern US: The pioneering work of Elmer Swenson,” in I. Goldman (ed.) Plant Breeding Reviews, 43, pp. 31–60. Hoboken, NJ, USA: Wiley.
  • Corona, G. and Nicoletti, G. (2010) “Renewable energy from the production residues of vineyards and wine: Evaluation of a business case,” New Medit, 9, pp. 41–47.
  • Dam van, J. et al. (2007) “Biomass production potentials in Central and Eastern Europe under different scenarios,” Biomass Bioenergy, 31, pp. 345–366. Available at: https://doi.org/10.1016/j.biombioe.2006.10.001.
  • Directive (2009) “Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides (Text with EEA relevance),” Official Journal, L 309.
  • Dobrowolska-Iwanek, J. et al. (2014) “Wine of cool-climate areas in South Poland,” South African Journal of Enology and Viticulture, 35(1), pp. 1–9. Available at: https://doi.org/10.21548/35-1-980.
  • EN-ISO 1928:2009. Solid mineral fuels – Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. Brussels: European Committee for Standardization.
  • EN-ISO 16948:2015-07. Solid biofuels – Determination of total content of carbon, hydrogen and nitrogen. Brussels: European Committee for Standardization.
  • EN-ISO 16994:2016. Solid biofuels – Determination of total content of sulphur and chlorine. Brussels: European Committee for Standardization.
  • EN-ISO 18122:2016-01. Solid biofuels – Determination of ash content. Brussels: European Committee for Standardization.
  • EN-ISO 18123:2016-01. Solid fuels – Determination of volatile kontent by gravimetric method. Brussels: European Committee for Standardization.
  • EN-ISO 18134-3:2015. Solid biofuels – Determination of moisture content – Oven dry method – Part 3: Moisture in general analysis sample. Brussels: European Committee for Standardization.
  • Fisher, K.H. (2000) “The development of interspecific grapevine hybrids in Ontario, Canada,” in H. Willer, U. Meier (eds.) Proceedings of the 6th International Congress on Organic Viticulture. Basel: IFOAM, pp. 205–208. Available at: https://orgprints.org/id/eprint/548/1/willer-meier-2000-winecongress.pdf (Accessed: February 21, 2023).
  • Garita-Cambronero, J. et al. (2021) “Biobutanol production from pruned vine shoots,” Renewable Energy, 177, pp. 124–133.
  • Gąstoł, M. (2015) “Vineyard performance and fruit quality of some interspecific grapevine cultivars in cool climate conditions,” Folia Horticulturae, 27(1), pp. 21–31. Available at: https://doi.org/10.1515/fhort-2015-0011.
  • Jacquet, F. et al. (2020) “Pesticide-free agriculture as a new paradigm for research,” Agronomy for Sustainable Development, 42, 8. Available at: https://doi.org/10.1007/s13593-021-00742-8.
  • Jutakridsada, P. et al. (2016) “Comparison study of sugarcane leaves and corn stover as a potential energy source in pyrolysis process,” Energy Procedia, 100, pp. 26–29. Available at: https://doi.org/10.1016/j.egypro.2016.10.142.
  • Lisek, J. (2004) “Odporność pąków trzydziestu odmian winorośli (Vitis sp.) na uszkodzenia mrozowe w warunkach centralnej Polski [Winter hardiness of thirty grape cultivar buds (Vitis sp.) under conditions of Central Poland],” Zeszyty Problemowe Postępów Nauk Rolniczych, 497, pp. 405–410.
  • Lisek, J. (2005) “Zdrowotność, plonowanie i rozmnażanie wybranych genotypów winorośli (Vitis sp. L.) w warunkach Polski [Health, yielding and propagation of selected vine genotypes (Vitis sp. L.) in Polish conditions],” Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa. Monografie i Rozprawy. Skierniewice: ISiK.
  • Lisek, J. (2008) “Climatic factors affecting development and yielding of grapevine in Central Poland,” Journal of Fruit and Ornamental Plant Research, 16, pp. 285–293.
  • Lisek, J. (2009) “Frost damage of buds on one-year-old shoots of wine and table grapevine cultivars in Central Poland following the winter of 2008/2009,” Journal of Fruit and Ornamental Plant Research, 17, pp. 149–161.
  • Lisek, J. (2010) “Yielding and healthiness of selected grape cultivars for processing in Central Poland,” Journal of Fruit and Ornamental Plant Research, 18, pp. 265–272.
  • Lisek, J. et al. (2016) “Growth, yielding and healthiness of grapevine cultivars ‘Solaris’ and ‘Regent’ in response to fertilizers and biostimulants,” Journal of Horticultural Research, 24(2). Available at: https://doi.org/10.1515/johr-2016-0020.
  • Magagnotti, N. et al. (2009) “Protocollo tecnico di utilizzazione delle potature di vigneti e oliveti [Technical protocol for the utilization of pruning residues from vineyards and olive groves],” The forest-wood-energy chain: Results from the International Project Woodland Energy. Florence, Italy: ARSIA di Regione Toscana, pp. 55–66.
  • Maj, G. (2018) “Emission factors and energy properties of agro and forest biomass in aspect of sustainability of energy sector,” Energies, 11, 1516. Available at: https://doi.org/10.3390/ en11061516.
  • Manzone, M. et al. (2016) “Biomass availability and quality produced by vineyard management during a period of 15 years,” Renewable Energy, 99, pp. 465–471. Available at: https://doi.org/10.1016/j.renene.2016.07.031.
  • Mendívil, M.A. et al. (2013) “Chemical characterization of pruned vine shoots from La Rioja (Spain) for obtaining solid bio-fuels,” Journal of Renewable and Sustainable Energy, 5, 033113. Available at: https://doi.org/10.1063/1.4808043.
  • Mendivil, M.A. et al. (2015) “Energy potential of vine shoots in La Rioja (Spain) and their dependence on several viticultural factors,” Ciencia e investigación agraria: revista latinoamericana de ciencias de la agricultura, 42(3), pp. 443–451. Available at: https://doi.org/10.4067/s0718-16202015000300012.
  • Miranda, T. et al. (2015) “A review of pellets from different sources,” Materials, 8, pp. 1413–1427. Available at: https://doi.org/10.3390/ma8041413.
  • Montero, G. et al. (2016) “Higher heating value determination of wheat straw from Baja California, Mexico,” Energy, 109, pp. 612–619. Available at: https://doi.org/10.1016/j.energy.2016.05.011.
  • Ochmian, I. et al. (2013) “The impact of cutting and mulching grapevine Regent on yielding and fruit quality,” Folia Pomeranae Universitatis Technologiae Stetinensis, 304(26), pp. 87–96.
  • Pacifico, D. et al. (2013) “Performance of interspecific grapevine varieties in north-east Italy,” Agricultural Sciences, 4, pp. 91–101. Available at: https://doi.org/10.4236/as.2013.42015.
  • Roca, P. (2019) Statistical report on world vitiviniculture. Paris, France: OIV.
  • Rosúa, J.M. and Pasadas, M. (2012) “Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes,” Renewable and Sustainable Energy Reviews, 16, pp. 4190–4195. Available at: https://doi.org/10.1016/j.rser.2012.02.035.
  • Scarlat, N., Blujdea, V. and Dallemand, J.F. (2011) “Assessment of the availability of agricultural and forest residues for bioenergy production in Romania,” Biomass Bioenergy, 35, pp. 1995–2005. Available at: https://doi.org/10.1016/j.biombioe.2011.01.057.
  • Senila, L. et al. (2020) “Sustainable biomass pellets production using vineyard wastes,” Agriculture, 10, 501. Available at: https://doi.org/10.3390/agriculture10110501.
  • Smiley, L.A. and Cochran, D. (2016) A review of cold climate grape cultivars. Iowa State University Extension and Outreach. Available at: https://www.extension.iastate.edu/wine/wp-content/uploads/2021/09/HORT3040.pdf (Accessed: February 23, 2023).
  • Souček, J., Burg P. and Kroulík, M. (2007): “Dřevo z ovocných výsadeb jako potenciální zdroj energie [Wood from fruit woods as potentional resource of energy],” in Mezinárodní konference Strom a květina – součást života. Průhonice: VÚKOZ, pp. 181–183.
  • Spinelli, R. et al. (2012) “Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues,” Applied Energy, 89(1), pp. 374–379. Available at: https://doi.org/10.1016/j.apenergy.2011.07.049.
  • Spinelli, R. et al. (2014) “An alternative to field burning of pruning residues in mountain vineyards,” Ecological Engineering, 70, pp. 212–216. Available at: https://doi.org/10.1016/j.ecoleng.2014.05.023.
  • Uzun, H. et al. (2017) “Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis,” Bioresource Technology, 234, pp. 122–130. Available at: https://doi.org/10.1016/j.biortech.2017.03.015.
  • Zabadal, T.J. et al. (2007) “Winter injury to grapevines and methods of protection,” Extension Bulletin, E2930. East Lansing: Michigan State University.
  • Zhang, K. et al. (2017) “Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy,” Energy, 118, pp. 1353–1360. Available at: https://doi.org/10.1016/j.energy.2016.11.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06d96a9f-4914-4f1b-a280-c0a2b20b4eaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.