PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and photocatalytic properties of Ni-TiO2 photocatalysts prepared by mechanochemical synthesis assisted with calcination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the study the mechanochemical synthesis in the planetary ball mill was used to prepare photocatalytic materials obtained on the basis of TiO2 and nickel(II) acetylacetonate as a Ni2+ source. Three materials with different contents of Ni2+: 5, 10 and 20% wt. were prepared. The obtained materials were calcinated at 800°C for 1 h. Their physicochemical properties were investigated using the N2 adsorption/desorption, FT-IR/PAS, XRD, UV-Vis/DRS and SEM methods. Additionally, thermal stability of the obtained materials was examined (TGA/DTG/DTA). Photocatalytic activity of the samples was tested in relation to the aqueous solution of Safranin T (initial concentration C0 = 1×10-5 mol L-1) at the visible light (Vis). The results indicate that the mechanochemical synthesis is an effective and simple method for preparing materials with photocatalytic properties. All obtained materials were characterized by greater photocatalytic activity compared to the initial TiO2.
Rocznik
Strony
art. no. 150348
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
Bibliografia
  • AJMAL, A., MAJEED, I., MALIK, R. N., IDRISS, H., NADEEM, M. A., 2014. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc. Adv. 4(70), 37003-37026.
  • ALI H., 2010. Biodegradation of synthetic dyes-a review. Water, Air, Soil Pollut. 213(1), 251-273.
  • AMMARI, Y., El ATMANI, K., BAY, L., BAKAS, I., QOURZAL, S., ICHOU, I. A., 2020. Elimination of a mixture of two dyes by photocatalytic degradation based on TiO2 P-25 Degussa. Mater. Today, 22, 126-129.
  • ANASTAS, P. T., KIRCHHOFF, M. M. 2002. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35(9), 686-694.
  • ANDERSON, C., BARD, A. J., 1995. An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99(24), 9882-9885.
  • AWUAL, M. R., YAITA, T., MIYAZAKI, Y., MATSUMURA, D., SHIWAKU, H., TAGUCHI, T., 2016. A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci. Rep. 6(1), 1-10.
  • BARAKAT, M. A., 2011. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4(4), 361-377.
  • BESSEKHOUAD, Y., ROBERT, D., WEBER, J. V., 2003. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobiol. A. 157(1), 47-53.
  • BHATIA, S.C., 2017. Pollution control in textile industry. WPI Publishing, New York.
  • BURMEISTER, C. F., KWADE, A., 2013. Process engineering with planetary ball mills. Chem. Soc. Rev. 42(18), 7660-7667.
  • CHARMAS, B., SKUBISZEWSKA-ZIĘBA, J., WANIAK-NOWICKA, H., 2017. Thermal and calorimetric investigations oftitania-silica composites. Adsorpt. Sci. Technol. 35(7-8), 706-713.
  • CHAVAN, R. B., 2011. Environmentally friendly dyes. Handbook of textile and industrial dyeing, V. 1 in Woodhead Publishing Series in Textiles, 515-561.
  • DEAN, J. G., BOSQUI, F. L., LANOUETTE, K. H., 1972. Removing heavy metals from waste water. Environ. Sci. Technol. 6(6), 518-522.
  • DUAN, B., ZHU, Z., SUN, C., ZHOU, J., WALSH, A., 2020. Preparing copper catalyst by ultrasound-assisted chemical precipitation method. Ultras. Sonochem. 64, 105013.
  • DUTTA, K., MUKHOPADHYAY, S., BHATTACHARJEE, S., CHAUDHURI, B., 2001. Chemical oxidation of methylene blue using a Fenton-like reaction. J. Hazard. Mater. 84(1), 57-71.
  • FARGHALI, A. A., ZAKI, A. H., KHEDR, M. H., 2016. Control of selectivity in heterogeneous photocatalysis by tuning TiO2 morphology for water treatment applications. Nanomater. Nanotechnol. 6, 12.
  • FORGACS, E., CSERHATI, T., OROS, G., 2004. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30(7), 953-971.
  • GÓRSKA, P., ZALESKA, A., KOWALSKA, E., KLIMCZUK, T., SOBCZAK, J. W., SKWAREK, E., JANUSZ, W., HUPKA, J., 2008. TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties. Appl. Catal. B. Environmental, 84(3-4), 440-447.
  • GREGG, S. J., SING, K. S. W., 1982. Adsorption, surface area and porosity. 2nd ed. Academic Press, London, United Kingdom.
  • GUN’KO, V.M., 2014. Composite materials: Textural characteristics. Appl. Surf. Sci. 307, 444-454.
  • GUN’KO, V.M., DO, D.D., 2001. Characterization of pore structure of carbon adsorbents using regularization procedure. Coll. Surf. A. 19, 71-83.
  • GUN’KO, V.M., MIKHALOVSKY, S.V., 2004. Evaluation of slitlike porosity of carbon adsorbents. Carbon, 42:843-849.
  • GUTIERREZ, O., PARK, D., SHARMA, K. R., YUAN, Z., 2010. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Res. 44(11), 3467-3475.
  • HASHIM, K. S., KOT, P., ZUBAIDI, S. L., ALWASH, R., Al KHADDAR, R., SHAW, A., AL-JUMEILY, D., ALJEFERY, M. H., 2020. Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from wastewater. J. Water Process. Eng. 33, 101079.
  • HOLZWARTH, U., GIBSON, N., 2011. The Scherrer equation versus the'Debye-Scherrer equation'. Nat. nanotechnol. 6(9), 534-534.
  • HU, W., LI, L., LI, G., LIU, Y., WITHERS, R. L., 2014. Atomic-scale control of TiO6 octahedra through solution chemistry towards giant dielectric response. Sci. Rep. 4, 6582.
  • HYUN KIM, D., SUB LEE, K., KIM, Y. S., CHUNG, Y. C., KIM, S. J., 2006. Photocatalytic Activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J. Am. Ceram. Soc. 89(2), 515–518.
  • IQBAL, M. J., ASHIQ, M. N., 2007. Adsorption of dyes from aqueous solutions on activated charcoal. J. Hazard. Mater. 139(1), 57-66.
  • ISMAIL, M., AKHTAR, K., KHAN, M. I., KAMAL, T., KHAN, M. A., M ASIRI, A., JONGCHUL, S., KHAN, S. B., 2019. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 25(34), 2645-3663.
  • JING, D., ZHANG, Y., GUO, L., 2005. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chemical Physics Letters, 415(1-3), 74-78.
  • KHAYET, M., 2013. Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes. Desalination. 321, 60-66.
  • KOE, W. S., LEE, J. W., CHONG, W. C., PANG, Y. L., SIM, L. C., 2019. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27(3), 2522-2565.
  • KOLEN’KO, Y. V., CHURAGULOV, B. R., KUNST, M., MAZEROLLES, L., COLBEAU-JUSTIN, C., 2004. Photocatalytic properties of titania powders prepared by hydrothermal method. Appl. Catal. B. 54(1), 51-58.
  • KOSOWSKA, B., MOZIA, S., MORAWSKI, A. W., GRZMIL, B., JANUS, M., KAŁUCKI, K., 2005. The preparation of TiO2–nitrogen doped by calcination of TiO2•xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater Sol. Cells . 88(3), 269-280.
  • KUBIAK, A., BIELAN, Z., KUBACKA, M., GABAŁA, E., ZGOŁA-GRZEŚKOWIAK, A., JANCZAREK, M., ZALAS, M., ZIELIŃSKA-JUREK, A., SIWIŃSKA-CIESIELCZYK, K. JESIONOWSKI, T., 2020. Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Appl. Surf. Sci. 520, 146344.
  • KUCIO, K., CHARMAS, B., PASIECZNA-PATKOWSKA, S., 2019. Structural, thermal and photocatalytic properties of composite materials SiO2/TiO2/C. Adsorption. 25(3), 501-511.
  • KUCIO, K., CHARMAS, B., PASIECZNA-PATKOWSKA, S., ZIĘZIO, M., 2020. Mechanochemical synthesis of nanophotocatalysts SiO2/TiO2/Fe2O3: their structural, thermal and photocatalytic properties. Appl. Nanosci. 10, 4733-4746.
  • KUDO, A., SEKIZAWA, M., 2000. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem. Commun. 15, 1371-1372.
  • LONG, Q., ZHANG, Z., Qi, G., WANG, Z., CHEN, Y., LIU, Z. Q., 2020. Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater. ACS Sustain. Chem. Eng. 8(6), 2512-2522.
  • LOPEZ, R., GÓMEZ, R., 2012. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61(1), 1-7.
  • MAHAPATRA, N.N., 2016. Woodhead Publishing India in Textiles. Textile Dyes. CRC Press, New Delhi.
  • MOLCHANOV, V.V., BUYANOV, R.A., 2001. Scientific grounds for the application of mechanochemistry to catalyst preparation. Kinet. Catal. 42(3), 366–374.
  • NEGISHI, N., TAKEUCHI, K., 1999. Structural changes of transparent TiO2 thin films with heat treatment. Mater. Lett. 38(2), 150-153.
  • NICHIO, N. N., CASELLA, M. L., PONZI E. N., FERRETTI, A. O. A., 2003. Study of the decomposition of supported nickel acetylacetonate by thermal techniques. Thermochim. Acta, 400(1-2), 101-107.
  • PANDIT, A. B., KUMAR, J. K., 2019. Drinking water treatment for developing countries: physical, chemical and biological pollutants. R. Soc. Chem., Croydon, United Kingdom.
  • QDAIS, H. A., MOUSSA, H., 2004. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105-110.
  • RAUF, M. A., ASHRAF, S. S., 2009. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151(1-3), 10-18.
  • ROUQUEROL, J., BARON, G., DENOYEL, R., GIESCHE, H., GROEN, J., KLOBES, P., LEVITZ, P., NEIMARK, A.V., RIGBY, S., SKUDAS, R., SING, K., THOMMES, M., UNGER, K., 1994. Recommendations for the characterization of porous solids. Pure. Appl. Chem. 66, 1739-1758.
  • SAINI, R. D., 2017. Textile organic dyes: polluting effects and elimination methods from textile waste water. Int. J. Chem. Eng. Res. 9(1), 121-136.
  • SANCHEZ-MARTINEZ, A., CEBALLOS-SANCHEZ, O., KOOP-SANTA, C., LÓPEZ-MENA, E. R., OROZCO-GUAREÑO, E., GARCÍA-GUADERRAMA, M., 2018. N-doped TiO2 nanoparticles obtained by a facile coprecipitation method at low temperature. Ceram. 44(5), 5273-5283.
  • SHABAN, M., AHMED, A. M., SHEHATA, N., BETIHA, M. A., RABIE, A. M., 2019. Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 555, 31-41.
  • SOCRATES, G., 2001. Infrared and Raman characteristic group frequencies. Tables and charts. John Wiley&Sons, Ltd., Chichester, England.
  • SYDORCHUK, V., KHALAMEIDA, S., SKWAREK, E., BIEDRZYCKA, A., 2022. Some applications of barium titanate prepared by different methods. Physicochem. Probl. Miner. Process., 58(2), 147192.
  • TAN, B. H., TENG, T. T., OMAR, A. M., 2000. Removal of dyes and industrial dye wastes by magnesium chloride. Water res. 34(2), 597-601.
  • TAN, K. B., VAKILI, M., HORRI, B. A., POH, P. E., ABDULLAH, A. Z., SALAMATINIA, B., 2015. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229-242.
  • TÜRGAY, O., ERSÖZ, G., ATALAY, S., FORSS, J., WELANDER, U., 2011. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep. Purif. Technol. 79(1), 26-33.
  • VISWANATHAN, B., 2018. Photocatalytic degradation of dyes: an overview. Current Catalysis, 7(2), 99-121.
  • ZALESKA, A., 2008. Doped-TiO2: A Review. Recent Pat. Eng. 2(3), 157-164.
  • ZHOU, C. S., WU, J. W., DONG, L. L., LIU, B. F., XING, D. F., YANG, S. S., WU, X. K., WANG, Q., FAN, J. N., FENG, L. P., CAO, G. L., 2020. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 388, 122070.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06d6c797-bb70-46b5-942d-ebfa2fb132e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.