PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Fire Safety Engineering to Rolling Stock

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wkład i ograniczenia w zakresie inżynierii bezpieczeństwa pożarowego do oceny poziomu bezpieczeństwa pożarowego w pociągach europejskich
Konferencja
Konferencja Międzynarodowa "Nowoczesne Kierunki Ochrony Przeciwpożarowej Taboru Szynowego" (2013 ; Warszawa)
Języki publikacji
EN
Abstrakty
EN
The work presented in this document is related to the development, validation and limitations of a Fire Safety Engineering methodology in railways. It is issued from work performed during the European Research program TRANSFEU. As a first step of Fire Safety Engineering methodology, risk analysis has identified the most critical scenarios to be studied, considering actual exploitation conditions and rules in European railway network. The study of one such scenario has been performed to quantify fire safety performance level of a given train using advanced numerical tools and a multi-scale approach. This predictive method shows a good capability to reproduce properly fire growth, heat release rate, temperatures and carbon dioxide concentrations in a real-scale scenario. Nevertheless, this study highlights also a lack of prediction for carbon monoxide and other toxic species.
PL
W artykule omówiono zakres i wyniki finansowanego w ramach 7 Ramowego Programu UE (FP7-SST-2008-RTD-1 dla Transportu Powierzchniowego) projektu TRANSFEU (Transport Fire Safety Engineering in the European Union) "Inżynieria ochrony przeciwpożarowej w transporcie UE". W projekcie wykorzystano holistyczne podejście do bezpieczeństwa pożarowego taboru pasażerskiego. Po analizie ryzyka i wytypowaniu najbardziej krytycznych scenariuszy, przeprowadzono wiele badań, od skali laboratoryjnej do naturalnej, których wyniki na każdym etapie walidowano symulacjami numerycznymi. Uzyskano dużą przewidywalność rozwoju pożaru w skali naturalnej na podstawie symulacji FSE w zakresie szybkości wydzielania ciepła, temperatury i stężenia dwutlenku węgla. Natomiast dla emisji tlenku węgla oraz innych gazów toksycznych wystąpiły duże rozbieżności. Powyższe potwierdziło, że pożar w wagonie jest zjawiskiem bardzo skomplikowanym, na którego przebieg ma wpływ wiele czynników.
Rocznik
Tom
Strony
51--75
Opis fizyczny
Bibliogr. 40 poz., il.
Twórcy
autor
  • Laboratoire national de métrologie et d'essais, Paris
autor
autor
Bibliografia
  • 1. Braun E.: A Fire Hazard Evaluation of the Interior of WMATA Metrorail Cars, Final Report. Prepared for Washington Metropolitan Area Transit Authority, NBSIR 75-971, National Bureau of Standards (NBS), 1975.
  • 2. -Braun E.: Fire Hazard Evaluation of BART Vehicles, Prepared for Urban Mass Transportation Administration (UMTA), now Federal Transit Administration (FTA), NBSIR 78-1421, National Bureau of Standards (NBS), 1978.
  • 3. Briggs P. et alii: FIRESTARR - Final Report, FIRESTARR Consortium, Contract SMT4-CT97-2164, 2001.
  • 4. Briggs P. et alii: The FIRESTARR Research Project on the Reaction-To-Fire Performance of Products in European Trains, Proceedings of the 9th International Interflam Conference, Edinburgh, Scotland, pp. 925-936, 2001.
  • 5. Camillo A. et alii: Risk analysis of fire and evacuation events in the European Railway Transport Network, Fire Safety Journal (Accepted 2013, under press).
  • 6. Camillo A. et alii: Relative risk analysis methodology of fire and evacuation events in European railway transport, 12th International Conference Fire and Materials, San-Francisco, USA, pp. 13-25, January 2011.
  • 7. Camillo A. et alii: TRANSFEU WP4 - Fire Safety Engineering Methodology for surface Transportation. Deliverable 4.2: Relative Fire risk analysis and design fire scenarios, FP7 Contract Number: 233786, February 2011. http://www.transfeu.eu/uploads/media/TRANSFEU_WP4_D4.2_Relative_Fire_risk_analysis_and_design_fire_scenarios.pdf
  • 8. Camillo A.: Multi-scale investigations of fire behaviour of a seat and a wall panel from European railway transport system, PhD-Thesis of Ecole Nationale Supérieure de Mécanique et d Aérotechnique, Université de Poitiers, France, 2013.
  • 9. Capote J. et alii: Heat release rate and computer fire modelling vs real scale fire tests in passenger trains, Fire and Materials, Vol. 32, pp. 213-229, 2008.
  • 10. CEN/TS 45545-1, Railway application, Fire protection on railway vehicles, Part 1: General, 2009.
  • 11. Chiam B.: Numerical simulation of metro train fire, Master thesis, University of Canterbury, New Zealand, p 303, 2005.
  • 12. EN 45545-2, Railway application, Fire protection of railway vehicles - Part 2: Requirement for fire behaviour of materials and components, 2009.
  • 13. EN 45545-2, Railway application - Fire protection of railway vehicles - Part 2: Requirement for fire behaviour of materials and components, 2012.
  • 14. EN 45545-2, Railway application - Fire protection of railway vehicles - Part 6: Fire control and management systems, 2009.
  • 15. European Directive, Directive 2008/57/EC on the interoperability of the rail system within the Community, Official Journal of the European Union, 2008.
  • 16. Goransson U., Lundqvist A.: Fires in buses and trains, fire test methods, SP Report 1990:45, SP Swedish National testing and research Institute, Fire Technology, Boras, Sweden, 1990.
  • 17. Guillaume E. et alii: TRANSFEU WP5 - Development of numerical simulation tools for fire performance, evacuation of people and decision tool for the train design, Deliverable 5.6. FP7 Contract Number: 233786, January 2013, http://www.transfer.eu/uploads/media/TRANSFEU_WP5_D5.6_V9_AS_HR.pdf
  • 18. Guillaume E.: La modélisation de la décomposition thermique des matériaux en cas d'incendie, Techniques de l'Ingénieur, Traité Sécurité, SE2066, p. 14, 2013.
  • 19. Hostikka S., McGrattan K.B.: Large Eddy Simulations of Wood Combustion, Proceedings og the 9th international Interflam Conference, Vol. 1, London, Interscience Communications Ltd, Edinburgh, Scotland, the 17-19th September 2001.
  • 20. Hu X., Wang Z., Jia F., Galea E.R.: Numerical investigation of fires in small rail car compartments, Journal of Fire Protection Engineering, Vol. 22, pp. 245-270, 2012.
  • 21. ISO 13571, Life threatening components of fire, Guidelines for the estimation of time to compromised tenability in fire, 2012.
  • 22. ISO 23932, Fire safety engineering - General principles, 2009.
  • 23. ISO 24473, Fire tests. Open calorimetry: Measurement of the rate of production of heat and combustion products for fire up to 40 MW, 2006.
  • 24. ISO 5660-1, reaction-to-fire tests, Heat release rate, Smoke production and Mass loss rate- Part 1: Heat release rate (cone calorimeter method), 2002.
  • 25. ISO 9705, Fire tests - Full scale room for surface products, 2006.
  • 26. Kling T. et alli: TRANSFEU WP5 - Development of numerical simulation tools for fire performance, evacuation of people and decision tool for the train design. Deliverable 5.6: Numerical tool for simulation of the passenger's evacuation for the train scenarios. FP 7 Contract Number: 233786, November 2012. http://www.transfeu.eu/uploads/media/TRANSFEU_WP5_D5.4_Final_Simulation_of_evacuation.pdf
  • 27. Lautenberger C.: Gpyro, A generalized pyrolysis model for combustible solids, PhD-Thesis of the University of Calufornia, Berkeley, USA, http://code.google.com/p/gpyro/ , 2007.
  • 28. McGrattan K.B. et alii: Fire dynamics simulator (version 5.5), User's guide, NIST publication 1019-5, 2010.
  • 29. Peacock R., Braun E.: Fire Safety of Passenger Trains; Phase I: Material Evaluation (Cone Calorimeter), NISTIR 6132, National Institute of Standards and technology (NIST), 1999.
  • 30. Peacock R. et alii: Fire Safety of Passenger Trains, Phase II: Application of Fire Hazard Analysis Techniques, NISTIR 6525, National Institute of Standards and Technology (NIST), 2002.
  • 31. Peacock R. et alii: Fire Safety of Passenger Trains, Phase III: Evaluation of Fire Hazard Analysis Using Full-scale Passenger Rail Car Tests, NISTIR 6563, National Institute of Standards and Technology (NIST), 2004.
  • 32. Peacock R., Braun E.: Fire Safety of Passenger Trains; Phase I: Material Evaluation (Cone Calorimeter), NISTIR 6032, National Institute of Standards and Technology (NIST), 1999.
  • 33. Peacock R., Braun E.: Fire Tests of Amtrak Passenger Rail Vehicle Interiors, Prepared for FRA, Technical Note 1193, National Bureau of Standards (NBS), 1984.
  • 34. Rein G.: Computational model of forward and opposed smoldering combustion with improved chemical kinetics, PhD-thesis of the University of California, Berkeley, USA, 2005.
  • 35. SOLAS Convention on Safety of Life at See, Chapter II-2 Fire Safety, Rule 17: Alternative Designs and Arrangements, International Maritime Organization.
  • 36. TRANSFEU WP4 - Fire Safety Engineering Methodology for surface Transportation. Deliverable 4.5: General description of the FSE methodology for surface transport, FP7 Contract Number: 233786, January 2013. http://www.transfeu.eu/uploads/media/TRANSFEU_WP4_D4.5_general_description_of_the_FSE_methodology_for_surface_transport.pdf
  • 37. TSI 2008/232/EC, Technical specification for interoperability of the Trans-European High speed rail system - Rolling stock sub system, Official Journal of the European Union, 2008.
  • 38. TSI 2011/291/EC, Technical specification for interoperability related on the Rolling stock sub system - Locomotives and passenger rolling stock of the Trans-European Union, 2011.
  • 39. White N., Dowling V.: Conducting a full-scale experiment on a rail passenger car, Proceedings of the 6th Asia-Oceania Symposium on Fire Science and Engineering, Korea, pp. 591 to 601, 2004.
  • 40. White N.: Fire development in passengers trains, Master thesis, Centre for Environment Safety and Risk Engineering, Victoria University, Australia, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06d25c81-ad50-484c-b0d1-807a1346b2c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.