Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recent renewed interest in Sasakian manifolds is due mainly to the fact that they can provide examples of generalized Einstein manifolds, manifolds which are of great interest in mathematical models of various aspects of physical phenomena. Sasakian manifolds are odd dimensional counterparts of Kählerian manifolds to which they are closely related. The paper presents a foliated approach to Sasakian manifolds on which the author gave several lectures. The paper concentrates on cohomological properties of Sasakian manifolds and of transversely holomorphic and Kählerian foliations. These properties permit to formulate obstructions to the existence of Sasakian structures on compact manifolds.
Wydawca
Czasopismo
Rocznik
Tom
Strony
72--82
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Wydzial Mathematyki i Informatyki, Uniwersytet Jagiellonski, Lojasiewicza 6,30-348 Krakow, Poland
Bibliografia
- [1] Wolak R. A., Geometric structures on foliated manifolds, Publ. Depto Geom y Top, no 76, Santiago de Compostela (1989).
- [2] Wolak R. A., Contact CR-submanifolds in Sasakian manifolds - a foliated approach, Publ. Math. Debrecen, 2000, 56 (1-2), 7-19
- [3] Wolak R. A., Foliated and associated geometric structures on foliated manifolds, Ann. Fac. Sc. Toulouse, 1989, 10, 337-360
- [4] Boyer Ch., Galicki K., Sasakian geometry, Oxford Un. Press, 2008
- [5] Haefliger A., Pseudogroups of local isometries, Differential geometry (Santiago de Compostela, 1984), Res. Notes in Math., 131, Pitman, Boston, MA, 1985, 174-197
- [6] Haefliger A., Some remarks on foliations with minimal leaves, J. Differential Geom., 1980, 15 (2), 269-284
- [7] El Kacimi-Alaoui A., Fundaments of foliation theory, in Foliations: Dynamics, Geometry and Topology, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2014
- [8] Molino P., Sergiescu V., Deux remarques sur les flots riemanniens, Manuscripta Math., 1985, 51, 145-161
- [9] Gluck H., Dynamical behaviour of geodesic fields, Global Theory of Dynamical Systems, Evanslon, Springer LN, 1980, 819, 190-215
- [10] El Kacimi-Alaoui A., Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Comp. Math., 1990, 73, 57-106
- [11] El Kacimi-Alaoui A., Hector G., Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier, 1986, 36, 207-227
- [12] Cordero L. A., Wolak R., Properties of the basic cohomology of transversely Kähler foliations, Rend. Circ. Mat. Palermo, Serie II, 1991, 40 (2), 177-188
- [13] Deligne E., Griffitths Ph., Morgan J., Sullivan D., Real homotopy theory of Kähler manifolds, Invent. Math., 1975, 29, 245-274
- [14] Tondeur Ph., Geometry of foliations, Monographs in Mathematics, Vol. 90, Birkhäuser Verlag, Basel, 1997
- [15] Cappelletti-Montano B., De Nicola A., Yudin I., Hard Lefschetz theorem for Sasakian manifolds, J. Differential Geom., 2015, 101, 47-66
- [16] Cappelletti-Montano B., De Nicola A., Marrero J. C., Yudin I, Examples of compact K-contact manifolds with no Sasakian metric, Int. J. Geom. Methods Mod. Phys., 2014, 11 (9), 1460028
- [17] Angella D., Cohomological aspects in complex non-Kähler geometry, Springer, 2014
- [18] Raźny P., The Frölicher-type inequalities for foliations, J. Geom. Phys., 2017, 114, 593-606
- [19] Schweitzer M., Autour de la cohomologie de Bott-Chern, 2007 [arXiv0709.3528 [math.AG]]
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ced3f0-061e-4992-aa6c-be19760a08b2