PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Temperature Effects in Fused Silica Optical Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fire-resistant fiber optic cables used in safety and monitoring systems playing an essential role in fire fighting and building evacuation procedures are required to temporarily maintain optical continuity when exposed to fire. However, the use of fused silica fiber at temperatures between 800◦C and 1000◦C is associated with two highly undesirable phenomena. Thermal radiation (incandescence) of optical fibers, with its intensity and spectral distribution being proportional to additional attenuation observed in the fiber’s hydroxyl absorption bands (“water peaks”) is one of them. The other consists in penetration of thermal radiation from the surroundings into the fiber, due to defects in glass, causing light scattering and resulting in fiber brittleness. Thermal radiation is a source of interference in fiber attenuation measurements performed during fire tests and affects normal operation of fiber optic data links in the event of a fire. In this article, results of laboratory tests performed on a telecom single mode and multimode fibers subjected to temperatures of up to 1000◦C are presented.
Rocznik
Tom
Strony
56--71
Opis fizyczny
Bibliogr. 43 poz., rys., fot., tab.
Twórcy
  • National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
  • National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
  • National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
  • [1] D. Homa, G. Pickrell, and A. Wang, „Investigation of high temperature silica based fiber optic materials", DOE Award No. DE-FE0027891, Virginia Polytechnic Institute & State University, 2018 [Online]. Available: https://www.osti.gov/servlets/purl/1489125
  • [2] A. Honda, K. Toh, S. Nagata, B. Tsuchiya, and T. Shikama, „Effect of temperature and irradiation on fused silica optical fiber for temperature measurement", J. of Nuclear Materials, vol. 367, pp. 1117-1121, 2007 (DOI: 10.1016/j.jnucmat.2007.03.193).
  • [3] Standard EN-IEC 60793-1-40, „Optical fibres - Part 1-40: Attenuation measurement methods" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/a4ce5f5b-006b-4ad2-a1c1-9dddbb796f22/en-iec-60793-1-40-2019
  • [4] Standard EN 60793-1-46, „Optical fibres - Part 1-46: Measurement methods and test procedures - Monitoring of changes in optical transmittance" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/dd4c92a8-dba8-498c-84a4-412_1cc3d9a/en-60793-1-46-2002
  • [5] Standard IEC TR 62222, „Fire performance of communication cables installed in buildings" [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/53462b01-8540-4799-8986-57812f68c23f/iec-tr-62222-2012
  • [6] Standard EN 60332-1-2, „Tests on electric and optical fibre cables under dire conditions - Part 1-2: Test for vertical ame propagation for a single insulated wire or cable - Procedure for 1 kW pre-mixed ame" [Online]. Available: http://bityl.pl/lnGQV
  • [7] Standard IEC 60332-3-10, „Tests on electric and optical fibre cables under fire conditions - Part 3-10: Test for vertical ame spread of vertically-mounted bunched wires or cables - Apparatus" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/6e572ecb-4b4c-4f6a-8478-27c773b76c8f/en-iec-60332-3-10-2018
  • [8] Standard IEC 60332-3-24, „Tests on electric and optical fibre cables under fire conditions - Part 3-24: Test for vertical ame spread of vertically-mounted bunched wires or cables - Category C" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/0fa90869-905f-46a2-9f58-40c8ea2647c4/en-iec-60332-3-24-2018
  • [9] Standard IEC 60332-3-25, „Tests on electric and optical fibre cables under fire conditions - Part 3-25: Test for vertical ame spread of vertically-mounted bunched wires or cables - Category D" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/_cbafe8-6378-4298-868f-6267e848e20c/en-iec-60332-3-25-2018
  • [10] Standard EN 50399, „Common test methods for cables under fire conditions. Heat release and smoke production measurement on cables during ame spread test. Test apparatus, procedures, results" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/aec73708-d180-4cf3-b532-fb0850ed0705/pren-50399
  • [11] Standard IEC 61034-1, „Measurement of smoke density of cables burning under defined conditions - Part 1: Test apparatus" [Online]. Available: https://global.ihs.com/doc detail.cfm?documentname=IEC%2061034%2D1&item s key=00134074
  • [12] Standard IEC 61034-2, „Measurement of smoke density of cables burning under defined conditions - Part 2: Test procedure and requirements" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/e39b159f-d63f-40a4-835b-df2ec023a31a/en-61034-2-2005-a2-2020
  • [13] Standard IEC 60754-1, „Test on gases evolved during combustion of materials from cables - Part 1: Determination of the halogen acid gas content" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/fe208672-6841-4787-be72-f420fa4a3b5a/en-60754-1-2014
  • [14] Standard IEC 60754-2, „Test on gases evolved during combustion of materials from cables - Part 2: Determination of acidity (by pH measurement) and conductivity" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/6f7e97c5-a648-480f-838a-c0be9ab5fa8e/en-60754-2-2014-a1-2020
  • [15] Standard IEC 60754-3, „Test on gases evolved during combustion of materials from cables - Part 3: Measurement of low level of halogen content by ion chromatography" [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/2bf8bd77-cea9-44a5-8079-7ccbe4f35f8b/iec-60754-3-2018
  • [16] Standard IEC 60331-1, „Tests for electric cables under fire conditions - Circuit integrity - Part 1: Test method for fire with shock at a temperature of at least 830_C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm" [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/_a2c2dd-6239-4799-b3a4-1da3312d4c40/iec-60331-1-2018
  • [17] Standard IEC 60331-2, „Tests for electric cables under fire conditions - Circuit integrity - Part 2: Test method for fire with shock at a temperature of at least 830_C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter not exceeding 20 mm" [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/2740c2d9-7e8d-43ba-aac0-ef2_e17fd2c/iec-60331-2-2018
  • [18] Standard IEC 60331-3, „Tests for electric cables under fire conditions - Circuit integrity - Part 3: Test method for fire with shock at a temperature of at least 830⁰C for cables of rated voltage up to and including 0,6/1,0 kV tested in a metal enclosure" [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/f76a006a-8ae7-4588-adb1-ebd9c419744a/iec-60331-3-2018
  • [19] Standard EN 50200, „Method of test for resistance to fire of unprotected small cables for use in emergency circuits" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/873a9c45-a35b-4ec0-b0d3-ab1fcc792af4/en-50200-2015
  • [20] Standard EN 50575, „Power, control and communication cables. Cables for general applications in construction works subject to re action to fire requirements" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/b8675c9d-b3b4-4a46-ae9e-7207aca441cb/en-50575-2014
  • [21] Standard DIN 4102-12, „Fire behaviour of building materials and elements - Part 12: Fire resistance of electric cable systems required to maintain circuit integrity - Requirements and testing" [Online]. Available: https://standards.globalspec.com/std/365477/din-4102-12
  • [22] Standard EN 50582, „Procedure to assess the circuit integrity of optical fibres in a cable under resistance to fire testing" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/7403ddfd-5ea6-4eb0-83bd-feb5_f0e3f2/en-50582-2016
  • [23] Arpita Mitra, Inna Kouzmina, and Maritza Lopez, „Thermal stability of the CPC fiber coating system", Corning White Paper, vol. 4250, 2010 [Online]. Available: https://www.corning.com/microsites/coc/oem/documents/specialty-fiber/WP4250-Thermal-Stability-of-the-CPC-Fiber-Coating-System.pdf
  • [24] A. A. Stolov, D. A. Simoff, and J. Li, „Thermal stability of specialty optical fibers", J. Lightwave Technology, vol. 26, no. 20, pp. 3443-3451, 2008 (DOI: 10.1109/JLT.2008.925698).
  • [25] „Reliability test report for SR15-9/125-ACL (SM Fiber with high temperature resistant acrylate coating)", Fujikura, 2013 [Online]. Available: http://www.fujikura.co.jp/eng/products/optical/appliedoptics/02/ icsFiles/afieldfile/2013/02/04/td4013.pdf
  • [26] Specification KA2001R1, „Technoame FOC-2-SLT-HFFR E30/ PH120 4x50/125 OM2 fibre optic safety cables", Technokabel S.A., 2020.
  • [27] FiberTek, „Armoured(SWA) fire resistant LSZH loose tube fiber optic cable - IEC 60331 FTSF-FLTFMAPSZ(FR): Steel CSM, mica wrapped jelly filled tube, aluminium moisture barrier, PE inner sheath, steel wire armoured, LSZH outer sheath", Rev0.0 (Mar17 C-IN1703111), 2017 [Online]. Available: https://www.vectorinfotech.com/FileStore/Full/Product92560 FTSF-FLTFMAPSZ(FR) Rev0.0(Mar17).pdf
  • [28] Standard IEC 60793-2-10:2019: Optical fibres - Part 2-10: Product specifications- Sectional specification for category A1 multimode fibres [Online]. Available: https://standards.iteh.ai/catalog/standards/iec/b85d8886-7454-46ed-b3e5-a2cc5ef12952/iec-60793-2-10-2019
  • [29] Recommendation ITU-T G.652, „Characteristics of a single-mode optical fibre and cable", 2016 [Online]. Available: https://www.itu.int/rec/dologin pub.asp?lang=e&id=T-REC-G.652-201611-I!!PDF-E&type=items
  • [30] Recommendation ITU-T G.657, „Characteristics of a bending-loss insensitive single-mode optical fibre and cable", 2016 [Online]. Available: https://www.itu.int/rec/dologin pub.asp?lang=e&id=T-REC-G.657-201611-I!!PDF-E&type=items
  • [31] Standard EN-IEC 60793-2-50, „Optical fibres - Part 2-50: Product specifications - Sectional specification for class B single-mode fibres" [Online]. Available: https://standards.iteh.ai/catalog/standards/clc/7ddb02c1-80c1-440c-a200-c95c0ca056fd/en-iec-60793-2-50-2019
  • [32] Standard ISO/IEC 11801, „Information technology - Generic cabling for customer premises", 2017 [Online]. Available: https://www.iso.org/standard/66182.html
  • [33] Standard ISO 834-1:1999, „Fire-resistance tests - Elements of building construction - Part 1: General requirements" [Online]. Available: https://www.iso.org/standard/2576.html
  • [34] OFS Fitel, „AllWave optical Fiber - Zero Water Peak: The industry's first zero water peak single-mode _ber for reliable full-spectrum performance", 2017 [Online]. Available: https://www.ofsoptics.com/wp-content/uploads/AllWave-117-web-7.pdf
  • [35] OFS Fitel, „AllWave FLEX+ Fiber - Zero Water Peak: Optimized bend performance and reliable low loss transmission for in-building, central office and cabinet applications", 2016 [Online]. Available: https://fiber-optic-catalog.ofsoptics.com/documents/pdf/AllWave-FLEX-PLUS-144-web.pdf
  • [36] M. Pellow-Jarman and M. Hetem, „Comparison of the thermal degradation products of poly(butylene terephthalate) and ame retardant poly(butylene terephthalate) formulations using a pyro lysis FTIR cell", Polymer Degradation and Stability, vol. 47, no. 3, pp. 413-421, 1995 (DOI: 10.1016/0141-3910(95)00006-2).
  • [37] P. K. Johnston, E. Doyle, and R. A. Orzel, „Acrylics thermal decomposition products and toxicity", J. of the American College of Toxicology, vol. 7, no. 2, pp. 139-200 1988 (DOI: 10.3109/10915818809014519).
  • [38] A. H. Rose and T. J. Bruno, „The observation of OH in annealed optical fiber", J. Non-Cryst. Solids, vol. 231, no. 3, pp. 280-285, 1998 (DOI: 10.1016/S0022-3093(98)00676-0).
  • [39] A. H. Rose, „Devitrification in Annealed Optical Fiber", J. of Lightwave Technol., vol. 15, no. 5, pp. 808-814, 1997 (DOI: 10.1109/50.580819).
  • [40] T. Shikama, K. Toh, S. Nagata, B. Tsuchiya, and Y. Ohno, „Temperature measurement by thermal luminescence of partially replaced core optical fiber", J. of Nuclear Materials vol. 386-388, pp. 1023-1026, 2009 (DOI: 10.1016/j.jnucmat.2008.12.204).
  • [41] OFS Fitel, „50 µm graded-index OM2 - bend-insensitive multimode optical fiber", 2018 [Online]. Available: https://fiber-optic-catalog.ofsoptics.com/documents/pdf/Graded-Index-50-Fibre-Data-Sheet.pdf
  • [42] Fujikura, „Fujikura FutureGuide-MM50 Multi Mode Fiber (ITU-T G.651): Multi mode fiber with 50 µm of core diameter (ITU-T G.651) short-reach optical transmission for LAN in offices and premises", 2020 [Online]. Available: https://www.fujikura.co.jp/products/optical/opticalfibers/01/2044175 11306.html
  • [43] O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, „Analysis of OH absorption bands in synthetic silica", J. of Non-Crystalline Solids, vol. 203, pp. 19-26, 1996 (DOI: 10.1016/0022-3093(96)00329-8).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ca8078-2ea5-49cd-9fdf-da8830731d60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.