PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of earth fault loop impedance measurement without nuisance tripping of RCDs in 3-phase low-voltage circuits

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Verification of electrical safety in low-voltage power systems includes the measurement of earth fault loop impedance. This measurement is performed to verify the effectiveness of protection against indirect contact. The widespread classic methods and meters use a relatively high value of the measuring current (5-20) A, so that they are a source of nuisance tripping of residual current devices (RCDs). The meters dedicated to circuits with RCDs usually use an extremely low value of current (lower than 15 mA), which in many cases it is not acceptable in terms of the measurement accuracy. This paper presents a method of earth fault loop impedance measurement in 3-phase circuits, without nuisance tripping of RCDs – the concept of measurement, the meter structure and the experimental validation. The nuisance tripping is avoided in spite of the use of measuring current value many times higher than that of the rated residual current of RCDs. The main advantage of the proposed method is the possibility of creating values of measuring current in a very wide range, what is very important with regard to accuracy of the measurement.
Rocznik
Strony
217--227
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wzory
Twórcy
  • Gdańsk University of Technology, Faculty of Electrical and Control Engineering, G. Narutowicza 11/12,80-233 Gdańsk, Poland
Bibliografia
  • [1] Zhang, X., Wei, J., Yue, S., Zha, X. (2018). An analytical method for mapping alarm information to model of power grid fault diagnosis. IEEJ Transactions on Electrical and Electronic Engineering, 13(6), 823-830.
  • [2] Krstivojevic, J.P., Djurić, M.B. (2015). Verification of transformer restricted earth fault protection by using the Monte Carlo method. Advances in Electrical and Computer Engineering, 15(3), 65-72.
  • [3] Gutten, M., Janura, R., Šebök, M., Korenčiak, D., Kučera, M. (2016). Measurement of short-circuit effects on transformer winding with SFRA method and impact test. Metrol. Meas. Syst., 23(4), 521-529.
  • [4] Cui, J., Shi, G., Gong, Ch. (2017). A fast classification method of faults in power electronic circuits based on support vector machines. Metrol. Meas. Syst., 24(4), 701-720.
  • [5] Ghanem, A., Rashed, M., Sumner, M., Elsayes, M.A., Mansy, I.I.I. (2017). Grid impedance estimation for islanding detection and adaptive control of converters. IET Power Electronics, 10(11), 1279-1288.
  • [6] Pablo, G., Guerrero, J.M., García, J., Navarro-Rodriguez, A., Sumner, M. (2014). Low frequency signal injection for grid impedance estimation in three phase systems. IEEE Energy Conversion Congress and Exposition (ECCE), 1542-1549.
  • [7] Nino, E.E., Nassif, A.B., Xu, W. (2005). Network impedance measurement methods based on on-site data. Proc. of the 37th Annual North American Power Symposium, 569-575.
  • [8] Palethorpe, B., Sumner, M., Thomas, D.W.P. (2000). Power system impedance measurement using a power electronic converter. Proc. on Harmonics and Quality of Power, 208-213.
  • [9] Kaspirek, M., Mezera, D. (2013). Voltage quality parameters in LV distribution grids in dependence, on short circuit impedance. 22nd Int. Conf. Electricity Distribution, Stockholm.
  • [10] Czapp, S., Guzinski, J. (2018). Electric shock hazard in circuits with variable-speed drives. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(3), 361-372.
  • [11] Low-voltage electrical installations - Part 4-41: Protection for safety - Protection against electric shock, HD 60364-4-41 (2017).
  • [12] Low-voltage electrical installations - Part 6: Verification, IEC 60364-6. (2016).
  • [13] Aigner, M., Schmautzer, E., Sigl, Ch., Wieland, T., Fickert, L. (2013). Fehlerschleifenimpedanz-Messung in Niederspannungsnetzen mit Wechselrichtern. 8. Intern. Energiewirtschaftstagung an der TU Wien, IEWT 2013, Wien.
  • [14] Roskosz, R., Ziolko, M. (2003). Measurement accuracy of short-circuit loop impedance in power systems. Proc. XVII IMEKO World Congress, TC4, Dubrovnik, Croatia, 903-907.
  • [15] Electrical safety in low-voltage distribution systems up to 1000 V a.c. and 1500 V d.c. – Equipment for testing, measuring or monitoring of protective measures - Part 3: Loop impedance, IEC 61557-3. (2007).
  • [16] Czapp, S. (2012). Fault loop impedance measurement in low voltage network with residual current devices. Elektronika ir Elektrotechnika, 122(6), 109-112.
  • [17] Escriva-Escriva, G., Roldan-Porta, C., de Jong, E.C.W. (2016). Nuisance tripping of residual current circuit breakers in circuits supplying electronic loads. Electric Power Systems Research, 131, 139-146.
  • [18] Czapp, S., Borowski, K., Dobrzynski, K., Klucznik, J., Lubosny, Z. (2015). A new method of fault loop resistance measurement in low voltage systems with residual current devices. Intern. Conf. PowerTech2015, Eindhoven, The Netherlands.
  • [19] Czapp, S., Borowski, K. (2016). Experimental verification of a new method of loop resistance testing in low voltage systems with residual current devices. 21st IMEKO TC-4 Intern. Symposium on Understanding the World Through Electrical and Electronic Measurement, and 19th Intern. Workshop on ADC Modelling and Testing, Budapest, Hungary, 245-250.
  • [20] Czapp, S., Borowski, K. (2016). Evaluation of applicability of classic methods of a fault loop impedance measurement to circuits with residual current devices. Acta Energetica, 28(3), 45-52.
  • [21] Digital PSC-Loop Tester, Model KEW4120A, Instruction Manual, Kyoritsu.
  • [22] Harris, D.R., Litherland, M.B., Flowerday, A.L. (1988). Circuit testing. European patent no. 295800.
  • [23] Residual current operated circuit-breakers without integral overcurrent protection for household andsimilar uses (RCCBs) - Part 1: General rules, IEC 61008-1. (2010).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ca3912-0a21-4d31-8f02-0f60dd278e5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.