PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Austenite-grain-growth kinetics and mechanism in type 347H alloy steel for boiler tubes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research material (type 347H alloy steel) has been characterized using optical microscopy and an EDS/SEM system. Annealing experiments have been conducted at temperatures range of 600–1050°C for 30 min–20 h by using an atmosphere-controlled furnace. Normal grain growth with intermediate grain size has been related to the favouring of creep resistance to recommend the material suitable for boiler tubes at operating temperatures up to 750oC for long duration. The kinetics of grain growth in the 347H has been shown to behave similar to a pure metal in the initial stage of annealing in the range of 0–30 min, beyond which the grain-growth process was found to be suppressed due to second-phase (NbC) particle-pinning and solute drag effects. The grain-growth exponent n is computed to be in the range of 0.117–0.313; the deviation from ideal kinetic behavior (n=0.5) has been scientifically justified. The activation energy for grain growth Qg, for the investigated alloy, has been graphically computed and validated.
Rocznik
Strony
79--97
Opis fizyczny
Biblior. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Department of Mechanical Engineering, University of Malaya, 50306 Kuala Lumpur, Malaysia
  • Department of Mechanical Engineering, University of Malaya, 50306 Kuala Lumpur, Malaysia
  • Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Bibliografia
  • 1. Power. Design features of advanced ultra-supercritical plants, Part II https://www.powermag.com/design-features-of-advanced-ultrasupercritical-plants-part-ii/ Accessed on June 23, 2023.
  • 2. G. Kaushal, H. Singh, S. Parkash, Surface engineering, by detonation-gun spray coating, of 347H boiler steel to enhance its high-temperature corrosion resistance. Mater. High Temp. 2011, 28(1): 1–11. https://doi.org/10.3184/096034011X12960473417949.
  • 3. F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Eng. 2015, 1(2), 211 – 224. https://doi.org/10.15302/J-ENG-2015031.
  • 4. Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li, Precipitation behaviour, of type 347H heat-resistant austenitic steel during long-term high-temperature aging. J. Mater. Res. 2015, 30(23), 3642–3652. https://link.springer.com/article/10.1557/jmr.2015.343.
  • 5. V.T. Ha, W.S. Jung, Evolution of precipitate phases during long-term isothermal aging at 1083K (810 oC) in a new precipitation-strengthened heat-resistant austenitic stainless steel. Metall. Mater. Trans. 2012, 43, 3366–3378. https://link.springer.com/article/10.1007/s11661-012-1150-4.
  • 6. A. Sharafi, C.G. Haslam, R.D. Kerns, J. Wolfenstine, J. Sakamoto, Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A. 2017, 5(40), 21491-21504https://doi.org/10.1039/C7TA06790A.
  • 7. Y. Zhang, X. Li, Y. Liu, C. Liu, J. Dong, L. Yu, H. Li, Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling. Mater. Charact. 2020, 169, 110612. https://doi.org/10.1016/j.matchar.2020.110612.
  • 8. D. Zhao, M.T. Benson, K. Yang, Y. Huang, F.G. Di Lemma, B. Gong, F. Han, J. Lian, Grain growth kinetics of the gamma phase metallic uranium. J. Nuclear Mater. 2023, 574, 154185 https://doi.org/10.1016/j.jnucmat.2022.154185.
  • 9. M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, B.S. Murty, Grain growth kinetics in CoCrFeNi and CoCrFeMnNi high entropy alloys processed by spark plasma sintering. J. Alloys Compd. 2019, 791, 1114–1121 https://doi.org/10.1016/j.jallcom.2019.03.341.
  • 10. Z. Savaedi, H. Mirzadeh, R.M. Aghdam, R. Mahmudi, Thermal stability, grain-growth kinetics, mechanical properties, and bio-corrosion resistance of pure Mg, ZK 30, and ZEK300 alloys: A comparative study. Mater. Today. 2022, 33, 104825 https://doi.org/10.1016/j.mtcomm.2022.104825.
  • 11. J.K. Stanley, A.J. Perrotta, Grain growth in austenitic stainless steels. Metallogr. 1969, 2(4), 349-362. https://www.sciencedirect.com/science/article/abs/pii/0026080069900652?via%3Dihub.
  • 12. H.W. Luo, H. Dong, L.F. Chen, Grain growth in Nb-alloyed stainless steels of AISI 347 during heating. Mater. Sci. Forum. 2013, 753, 345-348 https://doi.org/10.4028/www.scientific.net/MSF.753.345.
  • 13. A. Lima, A. Nascimento, H. Abreu, P. de. Lima-Neto, Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321, and 347. J. Mater. Sci. 2005, 40(1), 139–144 https://link.springer.com/article/10.1007/s10853-005-5699-9.
  • 14. Savoy Piping Inc. ASTM A312 TP347H stainless steel seamless pipehttps://www.savoypipinginc.com/astm-a312-tp347h-stainless-steel-seamless-pipes-suppliers-manufacturer.html (accessed on July 7, 2023).
  • 15. H-s. Lee, J-s. Jung, D-s. Kim, K-b, Failure analysis of welded joints of 347H austenitic boiler tubes. Eng. Fail. Anal. 2015, 57, 413–422. https://doi.org/10.1016/j.engfailanal.2015.08.024.
  • 16. R. Pei, S. Korte-Kerzel, T. Al-Samamn, Normal and abnormal grain growth in magnesium: Experimental observations and simulations. J. Mater. Scie. Tech. 2020, 50, 257–270 https://doi.org/10.1016/j.jmst.2020.01.014.
  • 17. J. Moravec, I. Novakova, J. Sobotka, H. Neumann, Determination of grain growth kinetics and assessment of welding effect on properties of S700MC steel in te HAZ of welded joints. Metals, 2019, 9, 707–727. https://doi.org/10.3390/met9060707.
  • 18. Z. Huda, Metallurgy for Physicists and Engineers. CRC Press, Boca Raton, FL, 2020. https://doi.org/10.1201/9780429265587.
  • 19. Z. Huda, T. Zaharinie, Kinetics of grain growth in 2024-T3: an aerospace aluminum alloy. J. Alloys Compd. 2009, 478(1–2), 128–132. https://doi.org/10.1016/j.jallcom.2008.11.071.
  • 20. Z. Huda, Influence of particle mechanisms on kinetics of grain growth in a P/M superalloy. Mater. Sci. Forum. 2004, 467–470, 985–990. https://www.scientific.net/MSF.467-470.985.
  • 21. Z. Huda and B. Ralph, Kinetics of grain growth in powder formed IN-792: A nickel-base Superalloy. Mater. Charact. 1990, 25(2), 211-220.https://doi.org/10.1016/1044-5803(90)90011-8.
  • 22. R. Chen, Q. Chen, X. Huang, Q. He, J. Su, B. Tan, C. Xu, H. Deng, Q. Dai, Effect of Al content on the microstructural and grain growth kinetics of magnesium alloys. Metals. 2022, 12, 1955. https://www.mdpi.com/2075-4701/12/11/1955.
  • 23. B. Ralph, K.B. Shim, Z. Huda, J. Furley, M.I. Edirisinghe, The effects of particles and solutes on grain boundary migration and grain growth. Mater. Sci. Forum 1992, 94–96, 129–140. https://www.scientific.net/MSF.94-96.129.
  • 24. X. Yu, Y. Bai, B. Ye, L. Wang, B. Zhao, X. Kong, A Mg-6Y-3Zn-1Al Mg HPDC alloy having high thermal stability: Study of grain growth kinetics. J. Alloys Compnds.2022, 925, 166503. https://doi.org/10.1016/j.jallcom.2022.166503.
  • 25. B. Yuksel, T.O. Ozkan, Grain growth kinetics of B2O3-doped ZnO ceramics. Materials Science-Poland, 2015, 33(2), 220–229. https://doi.org/10.1515/msp-2015-0029.
  • 26. ASTM. ASTM E112-13(2021). Standard test methods for determining average grain size. Internet Source: https://www.astm.org/e0112-13r21.html (accessed July 7, 2023).
  • 27. R.N. Clark, J. Searle, T.L. Martin, W.S. Walters, G. Williams, The role of niobium carbides in the localised corrosion initiation of 20Cr-25Ni-Nb advanced gas-cooled reactor fuel cladding. Corrosion Science, 2020, 162, 108365. https://doi.org/10.1016/j.corsci.2019.108365.
  • 28. W.D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons, 2007.
  • 29. Aperam, 2023, AISI 347/347H Niobium Stabilized Stainless Steels. Internet Source: https://brasil.aperam.com/wp-content/uploads/2015/11/AISI-347347H-Niobium-Stabilized-Austenitic-Stainless.pdf (accessed on July 7, 2023).
  • 30. M. Mohseni, A.R. Eivani, H. Vafaeenezhad, H.R. Jafarian, M.T. Salehi, J. Zhou. An experimental and theoretical investigation of the effect of second-phase particles on grain growth during the annealing of hot-rolled AZ-61 magnesium alloy. J. Mater Res Tech. 2021, 15, 3585–3597, https://doi.org/10.1016/j.jmrt.2021.09.049.
  • 31. T. Gladman, Grain Size Control, CRC Press, Boca Raton (FL), 2004. https://doi.org/10.1201/9781003059417.
  • 32. Y.S. Lee, D.W. Kim, D.Y. Lee, W.S. Ryu, Effect of grain size on creep properties of type 316LN stainless steel. Metals & Mater. Int. 2001, 7(7), 107–114.https://link.springer.com/article/10.1007/BF03026948#:~:text=The%20effect%20of%20grain%20size,by%20the%20Hall%2DPetch%20relationship.
  • 33. Y. Li, J. Dlouhy, J. Vavřík, J. Džugan, P. Konopík, T. Krajňák, J. Veselý, Investigation of short-term creep properties of a coarse-grained Inconel 718 fabricated by directed energy deposition compared to traditional Inconel 718. Mater. Sci. Eng. A, 2022, 844, 143143. https://doi.org/10.1016/j.msea.2022.143143.
  • 34. Z. Huda, Grain growth in a powder-formed nickel-base superalloy, PhD Thesis, Department of Materials Technology, Brunel University, London, UK, 1991.
  • 35. Prosaic: Steel & Alloys. 347H Stainless Steel Pipes.https://www.prosaicsteel.com/347h_stainless_steel_pipes_tubes.html (accessed on 01/17/2023).
  • 36. G. Trego, J.C. Brachet, V. Vandenberghe, L. Portier, L. Gélébart, R. Chosson, J. Soulacroix, S. Forest, A.F. Gourgues-Lorenzon, Influence of grain size on the high temperature creep behaviour of M5 Framotom1 zirconium alloy under vacuum. J. Nucl. Mater. 2022, 560, 153503. https://doi.org/10.1016/j.jnucmat.2021.153503.
  • 37. F.J. Gil, P. Tarin, J.A. Planell, Grain growth kinetics in beta phase of Ti-6Al-4V alloy. in: Titanium ’92 Science and Technology (Eds: F.H. Froes, I. Caplan), Pittsburgh. The Miner. Metals. Mater. Soc. 1993. p 777–784.
  • 38. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1992-VOL1/1992_Vol.1-3-C-Grain_Growth_.pdf.
  • 39. Z. Huda, T. Zaharinie, I.H.S.C. Metselaar, S. Ibrahim, G.J. Min, Kinetics of grain growth in 718 Ni-base superalloy. Arch. Metall. Mater. 2014, 59(3), 847–852. https://journals.pan.pl/dlibra/publication/102721/edition/88738/content.
  • 40. C.T. Simpson, K.T. Aust, W.C. Winegard, The four stages of grain growth. Metall. Mater. Trans. B, 1971, 2(4), 987–991. https://link.springer.com/article/10.1007/BF02664229.
  • 41. K. Vattappara, Understanding the effect of temperature and time on the gamma prime coarsening for nickel-base superalloy Haynes 282. Degree Project in Mater. Scie. & Eng. School of Industrial Engineering & Management, KTH Royal Institute of Technology, Stockholm, Sweden, 2019.http://www.diva-portal.org smash/get/diva2:1353480/FULLTEXT02.pdf.
  • 42. K.R. Phaneesh, A. Bhat, G. Mukherjee, K.T. Kashyap, On grain growth kinetics in two-phase polycrystalline materials through Monte Carlo simulation. Bull. Mater. Sci. 36, 709–713 (2013). https://doi.org/10.1007/s12034-013-0531-7.
  • 43. M.F. Mat, Y.H.P. Manurung, Y.O. Busari, N. Muhammad, M. Graf. Experimental analysis on grain-growth kinetics of SS-316L austenitic stainless steel. J. Mech. Eng. 2021, 18(3), 97-111. https://jmeche.uitm.edu.my/wp-content/uploads/2021/09/6-RI-18-3-P20-51.pdf.
  • 44. B.P. Kashyap, K. Tangri. Grain growth behavior of type 316L stainless steel. Mater. Sci. Eng. A, 1992, 149(2), L13–L16. https://doi.org/10.1016/0921-5093(92)90392-E.
  • 45. R. Chen, Q. Chen, P. Peng, B. Tan, X. Huang, Q. He, Abnormal grain growth induced by <112̄0> orientation of AZ31 magnesium alloy. Mater. Sci. Tech. 2022 https://doi.org/10.1080/02670836.2023.2167297.
Uwagi
1) Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2) Błędna numeracja stron w powiązaniu z poprzednim artykułem z numeru - poprzedni artykuł z numeru kończy się na stronie 79, a niniejszy artykuł również zaczyna się na stronie 79 (powinien na 80).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06c2cdcb-c18c-4019-9309-7be03c4453c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.