Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Badanie szybkości przepływu wilgoci i ciepła przez włókniny o niewielkiej masie powierzchniowej korzystając z modelu teoretycznego
Języki publikacji
Abstrakty
In this paper, an intelligent model of heat and moisture propagation in light nonwoven fabrics was designed by conversion of a numerical propagation model of a partial differential equation to a feed forward propagation neural network. Propagation coefficients of heat and moisture transfers were estimated from the intelligent model for nonwoven samples containing hydrophilic natural and hydrophobic synthetic fibres. The results presented that the error of the model is acceptable less than 4.7% and 7.9% for estimation of heat and moisture diffusivity coefficients, respectively. The Anova test revealed that while fibre type and fabric thickness affected heat and moisture transfer through the fabric, factors such as surface mass density, heat and the moisture transfer constant were not significant. Also it was found that the optimum transfer rate was observed in the case of samples containing viscose or a viscose and polypropylene blend in the ratio of 60%:40%, respectively.
Inteligentny model przepływu wilgoci i ciepła przez włókniny o małej masie powierzchniowej został opracowany dla zasilania sztucznych sieci neuronowych na podstawie modelu numerycznego cząstkowych równań różniczkowych. Badano włókniny zawierające włókna hydrofobowe i hydrofilowe. Stwierdzono, że dokładność modelu jest akceptowalna dla modelu rozpatrywanych włókien. Test Anova wykazał, że rodzaj włókna i grubość włókniny wpływają na przepływ ciepła i wilgoci przez włókninę. Stwierdzono, że dla próbek zawierających wiskozę lub mieszankę wiskozy i polipropylenu w stosunku 60%:40% uzyskano optymalne prędkości przepływu.
Czasopismo
Rocznik
Strony
89--94
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
autor
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
autor
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
Bibliografia
- 1. Fanger PO. Thermal comfort: Analysis and Applications in Environmental Engineering, McGraw Hill, NY, 1972.
- 2. Li Y. The Science of Clothing Comfort. Textile Progress 1999; 31, 1/2.
- 3. Lee S, Obendorf, K. Barrier effectiveness and thermal comfort of protective clothing materials. Journal of the Textile Institute 2007; 98, 2: 87-97.
- 4. Fohr JP, Couton, D. Dynamic heat and water transfer through layered fabrics. Textile Research Journal 2002; 72, 1: 1-12.
- 5. Barnes JC, Holcombe BV. Moisture Sorption and Transport in Clothing During Wear. Textile Research Journal 1996; 66, 12: 777-786.
- 6. Woo S, Shalev I, Barker L. Heat and moisture transfer through nonwoven fabric Part I: heat transfer. Textile Research Journal 1994; 64, 3: 149-162.
- 7. Li Y, Holcombe BV. Mathematical Simulation of Heat and Moisture Transfer in a Human-Clothing-Environment System. Textile Research Journal 1998; 68, 6: 389-397.
- 8. Fan J, Cheng X. Heat and Moisture Transfer with Sorption and Phasechange Through Clothing Assemblies, Part II: Theoretical modeling, simulation, and comparison with experimental results. Textile Research Journal 2005; 75, 3:187-196.
- 9. Park J. Effect of moisture absorption of clothing on pitching speed of amateur baseball players in hot environmental conditions. Textile Research Journal 2006; 76, 5: 383-387.
- 10. Meeren PV, Cocquyt J, Flores S. Quantifying Wetting and Wicking Phenomena in Cotton Terry as Affected by Fabric Conditioner Treatment. Textile Research Journal 2002; 72, 5: 423-428.
- 11. Patnaik A, Rengasany RS, Ghosh A. Wetting and Wicking in Fibrous Materials. Textile Progress 2006; 38, 1.
- 12. Wang JH, Yasuda H. Dynamic Water Vapor and Heat Transport Through Layered Fabrics, Part I: Effect of Surface Modifications. Textile Research Journal 1991; 61, 1: 10-20.
- 13. Adlen MM, Walsh WK. Mechanisms of Transient Moisture Transport Between Fabrics. Textile Research Journal 1984; 54, 5: 334-343.
- 14. Ramachandra T, Kasavaraja N. A Study on Influencing Factors for Wetting and Wicking Behavior. IE Journal-Tx 2004; 84: 37-41.
- 15. Yoo S, Barker RL. Moisture Management Properties of Heat-resistant Workwear Fabrics, Effects of hydrophilic finishes and hygroscopic fiber blends. Textile Research Journal 2004; 74, 11: 995-1000.
- 16. Woo S, Shalev I, Barker L. Heat and moisture transfer through nonwoven fabrics Part II: Moisture diffusivity. Textile Research Journal 1994; 64, 4: 190-197.
- 17. Yoon HN, Buckley A. Improved comfort polyester Part I: Transport properties and thermal comfort of polyester/cotton blend fabrics. Textile Research Journal 1984; 54, 5: 289-298.
- 18. Mao N, Russell SJ. Directional permeability in homogeneous nonwoven structures Part I: the relationship between directional permeability and fiber orientation. Journal of the Textile Institute 2000; 91, 2: 235-243.
- 19. Mohammadi M, Banks-lee P. Determination radiative heat transfer through heterogeneous multilayer nonwoven materials. Textile Research Journal 2003; 73, 10: 896-900.
- 20. Obendorf S, Smith J. Heat transfer of nonwoven insulation material. Textile Research Journal 1986; 56, 9: 691-696.
- 21. Harnel PR, Mehta PN. A Survey and Comparison of Laboratory Test Methods for Measuring Wicking. Textile Research. Journal 1984; 54, 7:471-478.
- 22. Hu J, Yeung WK, Womg W, Xu W. Moisture Management Tester: A Method to Fabric Liquid Moisture Management Properties. Textile Research Journal 2005; 75, 1: 57-62.
- 23. Adler M, Walsh W. Mechanism of moisture transport between fabrics. Textile Research Journal 1984; 54, 5: 334-343.
- 24. Sherurell DM, Spivak SM, Hollies NR. Dynomic surface wetness of fabric in rrelation to clothing comfort. Textile Research Journal 1985; 55, 7: 394-399.
- 25. Li Y, Holcombe BV. A two stage sorption model of coupled diffusion of moisture and heat in wool fabrics. Textile Research Journal 1992; 62, 4: 211-217.
- 26. Yoo HS, Hu YS. Effect of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model. Textile Research Journal 2000; 70, 6: 542-549.
- 27. Finn JT, Sagar JG. Effect of imposing a temperature gradient on moisture vapor transport through water resistant breathable fabrics. Textile Research Journal 2000; 70, 5: 460-466.
- 28. Fukazawa T, Kawamura H. Water vapor transport through textiles and condensation in clothes at high altitudescombined influence of temperature and pressure simulating altitude. Textile Research Journal 2003; 73, 8: 657-663.
- 29. Fan J, Cheng X. Heat and moisture transfer with sorption and phase change through clothing assemblies, Part II: experimental investigation. Textile Research Journal 2005; 75, 2, 99-105.
- 30. Pan N, Gibson, P. Thermal and moisture transport in fibrious materials. Woodhead publishing Inc., England, Cambridge, 2006.
- 31. Dedov AV. Materials science: evaluation of the air permeability of needle punched materials. Fibers Chemistry 2006; 38, 3: 189-197.
- 32. Fausett L. Fundamentals of Neral Network. Prentice Hall, 1994
- 33. Krose B, Smagt P. An Introduction to Neural Networks. 8th ed The University of Amsterdam, Amesterdam, Netherland, 1996.
- 34. Smith GD. Numerical Solution of Partial Differential Equations: Finite Difference Method. Oxford Mathematical Handbook, 1986.
- 35. Mokhtari M, Semnani D, Sheikhzadeh M. Moisture and Heat Transfer in Hybrid Weft Knitted Fabric with Artificial Intelligence. Journal of Applied Polymer Science 2009; 114: 1731-1737.
- 36. Farnworth B, Lotens WA. Variation of water vapor resistance of microporous and hydrophobic films with relative humidity. Textile Research Journal 1990; 60, 1: 50-53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06c168fe-b2cf-41eb-918f-2a7c28089b5c