Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Yb3+/Er3+/GZO ceramics have been synthesized with high temperature solid-state method. The phase and structure of the Yb3+/Er3+/GZO ceramics were characterized by X-ray diffraction (XRD). The XRD pattern that following ions Yb3+ , Er3+ and Ga3+ were well doped into the ZnO lattice. Efficient visible up-conversion (UC) red and green emission were observed under 980 nm excitation. The mechanism of the UC luminescence is investigated on the basis of the UC luminescence emission spectra, the power curve and energy level diagram. The infl uence of doping ions to the intensity ratio of red to green is analyzed and high purity of red light (red/green = 29.9) is finally obtained.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--19
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- College of chemical engineering, Northeast Electric Power University, Jilin 132012, China
autor
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- Harbin Institute of Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150090, China
Bibliografia
- 1. Auzel, F. (2004). Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–174. DOI: 10.1021/cr020357g.
- 2. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. (2014). Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114(10), 5161–5214. DOI: 10.1021/cr400425h.
- 3. Yan, S.Q. (2015). Synthesis and luminescence of BiPO4:Tb3+ nanowires by a hydrothermal process. Mater. Manuf. Process. 30, 591–594. DOI: 10.1080/10426914.2014.994777.
- 4. Liu, Z.L., Zhou, H.Y., Du, L.P. & Yang, H. (2012). Synthesis and luminescence properties of Y2O3:Tb3+, Dy3+. Mater. Manuf. Process. 27 (12), 1306–1309. DOI: 10.1080/10426914.2012.663146.
- 5. Camargo, A.S.S., Possatto, J.F., Nunes, L.A.D.O., Botero, É.R., Andreeta, É.R.M., Garcia, D. & Eiras, J.A. (2006). Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics. Solid State Commun. 137(1–2), 1–5. DOI: 10.1016/j.ssc.2005.10.020.
- 6. Pan, W., Zhao, J. & Chen, Q. (2015). Fabricating upconversion fluorescent probes for rapidly sensing foodborne pathogens. J. Agric. Food Chem. 63 (36), 8068–8074. DOI: 10.1021/acs.jafc.5b02331.
- 7. Reszczyńska, J., Grzyb, T., Sobczak, J.W., Lisowski, W., Gazda, M., Ohtani, B. & Zaleska, A. (2015). Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B 163, 40–49. DOI: 10.1016/j.apcatb.2014.07.010.
- 8. Rony, S.K., Jörg, B., Jordan, A.H., Alexandre, H, Fan, D., Felix, N.C. (2012). Upconversion-powered photoelectrochemistry. Rsc Adv. 48, 209–211. DOI: 10.1039/c1cc16015j.
- 9. Martín-Rodríguez, R., Fischer, S., Ivaturi, A., Froehlich, B., Krämer, K.W., Goldschmidt, J.C., Richards, B.S. & Meijerin , A. (2013). Highly efficient IR to NIR upconversion in Gd2O2S: Er3+ for photovoltaic applications. Chem. Mater. 25(9), 1912–1921. DOI: 10.1021/cm4005745.
- 10. Yao, C., Wang, P., Zhou, L., Wang, R., Li, X., Zhao, D. & Zhang, F. (2014). Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. Anal. Chem. 86(19), 9749–9757. DOI: 10.1021/ac5023259.
- 11. Wu, X., Chen, G., Shen, J., Li, Z., Zhang, Y. & Han, G. (2015). Upconversion nanoparticles: a versatile solution to multiscale biological imaging. Bioconjug ate Chem. 26(2), 166–175. DOI: 10.1021/bc5003967.
- 12. Li, W., Wang, J., Ren, J. & Qu, X. (2014). Near-infrared upconversion controls photocaged cell adhesion. J. Am. Chem. Soc. 136(6), 2248–2251. DOI: 10.1021/ja412364m.
- 13. Dou, Q., Idris, N.M. & Zhang, Y. (2013). S andwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomater. 34(6), 1722–1731. DOI: 10.1016/j.biomaterials.2012.11.011.
- 14. Wang, Z., Li, X., Song, Y., Li, L., Shi, W. & Ma, H. (2015). An upconversion luminescence nanoprobe for the ultrasensitive detection of hyaluronidase. Anal. Chem. 87 (11), 5816–5823. DOI: 10.1021/acs.analchem.5b01131.
- 15. Liu, Z., He, T. & Xue, Q. (2016). Synthesis and up-conversion emission of β-Ca2SiO4 :( Er3+, Yb3+). Mater. Manuf. Process. 31(2), 194–197. DOI: 10.1080/10426914.2015.1048366.
- 16. Surabi, M.A., Chandradass, J. & Park, S. (2015). ZnO-based thin film transistor fabricated using radio frequency magnetron sputtering at low temperature. Mater. Manuf. Process. 30, 175–178. DOI: 10.1080/10426914.2014.892973.
- 17. Jang, Y.R., Yoo, K.H., Ahn, J.S., Kim, C. & Park, S.M. (2011). 1.54μm emission mechanism of Er-doped zinc oxide thin films. Appl. Surf. Sci. 257(7), 2822–2824. DOI: 10. 1016/j.apsusc.2010.10.069.
- 18. Vijayalakshmi, U., Chellappa, M., Anjaneyulu, U., Manivasagam, G. & Sethu, S. (2016). Influence of coating parameter and sintering atmosphere on the corrosion resistance behavior of electrophoretically deposited composite coatings. Mater. Manuf. Process. 31, 95–106. DOI: 10.1080/10426914.2015.1070424.
- 19. Chawalit, B., Sanpet, N., Sutthipoj, S., Pipat, R.,Supab, C. & Duangmanee, W. (2015). Effect of gallium interlayer in ZnO and Al-doped ZnO thin films. Integr. Ferroelectr. 165, 121–130. DOI: 10.1080/10584587.2015.1063914.
- 20. Ng, Z., Chan, K., Low, C., Kamaruddin, S.A. & Sahdan, M.Z. (2015). Al and Ga doped ZnO films prepared by a sol-gel spin coating technique. Ceram. Int. 41, S254–S258. DOI: 10.1016/j.ceramint.2015.03.183.
- 21. Hao, S., Sun, L., Chen, G., Qiu, H., Xu, C., Soitah, T.N., Sun, Y. & Yang, C. (2012). Synthesis of monoclinic Na3ScF6:1mol% Er3+/2mol% Yb3+ microcrystals by a facile hydrothermal approach. J. Alloys Compd. 522, 74–77. DOI: 10.1016/j.jallcom.2012.01.080.
- 22. Meng, X., Liu, C., Wu, F. & Li, J. (2011). Strong up-conversion emissions in ZnO:Er3+, ZnO:Er3+-Yb3+ nanoparticles and their surface modified counterparts. J. Colloid Interface Sci. 358(2), 334–337. DOI: 10.1016/j.jcis.2011.03.036.
- 23. Tamrakar, R.K., Bisen, D.P., Upadhyay, K. & Sahu, I.P. (2015). Comparative study and role of Er3+ and Yb3+ concentrations on upconversion process of Gd2O3:Er3+ Yb3+ phosphors prepared by solid-state reaction and combustion method. J. Phys. Chem. C 119(36), 21072–21086. DOI: 10.1021/acs.jpcc.5b06443.
- 24. Chen, G.X ., Ding, C.J., Wu, E., Wu, B.T., Chen, P., Ci, X.T., Liu, Y., Qiu, J.R., Zeng, H.P. (2015). Tip-enhanced upconversion luminescence in Yb3+-Er3+ codoped NaYF4 nanocrystals. J. Phys. Chem. C 119(39), 22604–22610. DOI: 10.1021/acs.jpcc.5b04387.
- 25. Lu, D., Cho, S.K., Ahn, S., Brun, L., Summers, C.J., Park, W. (2014). Plasmon enhancement chanism for the upconversion processes in NaYF4:Yb3+, Er3+ nanoparticles: axwellversus förster. ACS Nano 8(8), 7780–7792. DOI: 10.1021/nn5011254.
- 26. Bai, Y., Wang, Y., Yang, K., Zhang, X., Song, Y., & Wang, C.H. (2008). Enhanced upconverted photoluminescence in Er3+, and Yb3+, codoped ZnO nanocrystals with and without li+, ions. Optics Communications, 281(21), 5448–5452. DOI: 10.1016/j.optcom.2008.07.041.
- 27. Li, D., Dong, B., Bai, X., Wang, Y. & Song, H. (2010). Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+ nanoparticles. J. Phys. Chem. C 114(18), 8219–8226. DOI: 10.1021/jp100893k.
- 28. Gilliland , G.D., Powell, R.C. & Esterowitz, L. (1988). Spectral and up-conversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+. Physical Review B. DOI: 10.1103/PhysRevB.38.9958.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06bf4f36-1bae-4340-aefe-f57912c9a991